【李宏毅-机器学习】笔记一:机器学习基本概念 和 regression problem 回归问题

本文是基于李宏毅机器学习课程的学习笔记,重点介绍了回归问题。回归问题涉及预测数值型输出,如股票价格。机器学习步骤包括定义函数集合、找到最佳函数并实施。监督学习是最常见的方法,通过标记数据优化函数。文章详细阐述了如何使用梯度下降法寻找最佳函数,并讨论了函数调整、误差评估和正则化等优化策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:通过学习李宏毅老师的课程,总结出来的学习笔记。
机器学习的步骤
a set of function然后是通过数据集找到goodness function从里面找到一个最合适的function 然后再test,最后就是实现具体的问题。

learning map

regression 回归问题:output 是一个scale(数值,标量)比如预测股票等等
classification分类的问题:binary classification是输出的是 yes or no.
multi—class Classification是要做一个选择题
structured learning:输出很多结构,比如一句话

机器学习的方法:

supervised learning(监督学习):通过标记数据集来优化function
semi-supervised(半监督学习):通过标记一部分数据来优化function
unsupervised(不监督学习):不标记数据
transfer learning(转移学习):在标记的数据中放入一些与所要实现的功能不相关的数据
reinforcement learning(强化学习):不会告诉机器,所得到的结论是对还是错,只是会给它的结果打分,让它自己去优化。比如alpha go 就用到了这个方法。

**

regression problem

**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值