老板说付费用户下降了10%,我要怎么分析?

该博客探讨了数据异常检测的三个步骤:检查数据准确性、进行纵向分析以识别周期性变化,以及结合时间周期与游标分析。同时,重点讨论了付费用户的分层,特别是新增与老付费用户的转化率分析,通过核心功能漏斗来深入理解用户行为。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.点:首先看看数据是否有错误,保证数据准确性,检查容易出现错误的环节 是否出错,是否有指标口径不一致的情况,排出后可以基本确定是数据异常。
2.点—线:拉长时间周期,也就是进行纵向分析,看是否属于周期性变化,有些行业受季节影响很大。(比如可以拉长到上一年,看上一年同期是否有波动)。
3.点—线---面:结合时间周期与游标分析进行分析。总和来看数据异常波动的问题。

付费用户主要分层新增付费用户与老付费用户,新用户可以细化到渠道,线索转化率,对新老用户的转化率进行核心功能漏斗分析。
图解:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值