可视化计算非线性Lienard方程仿真

本文基于张延华教授的研究,利用Lienard方程探讨非线性负阻尼正弦波振荡器。通过Simulink建立仿真模型,研究参数变化对二维相平面周期、非周期及混沌解的影响,展示了不同角频率下的振荡器输出行为。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文依据张延华教授《基于可视化计算的非线性Lienard方程仿真研究》,用Lienard方程描述了一个非线性负阻尼正弦波振荡器。通过对Lienard方程的拆解,构造出了包含Simulink模型库模块和自行封装的新模块的拼合Simulink仿真结构模型。通过调节子模块f(x), g(x)中参数a, b的数值,固定g(x)中参数角频率的值,我们研究负阻尼振荡器再二维相平面上的三个典型周期、非周期及混沌解的运动轨迹; 通过固定子模块f(x), g(x)中参数a, b的数值,改变g(x)中参数角频率的值,我们研究在0.5至10范围内对非线性负阻尼正弦波振荡器输出的影响,再现了张延华教授的研究思路。
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值