C. Multi-Subject Competitiontime

             C. Multi-Subject Competitiontime limit per test2 secondsmemory limit per test256 megabytesinputstandard inputoutputstandard outputA multi-subject competition is coming! The competition has mm different subjects participants can choose from. That's why Alex (the coach) should form a competition delegation among his students.He has nn candidates. For the ii-th person he knows subject sisi the candidate specializes in and riri — a skill level in his specialization (this level can be negative!).The rules of the competition require each delegation to choose some subset of subjects they will participate in. The only restriction is that the number of students from the team participating in each of the chosen subjects should be the same.Alex decided that each candidate would participate only in the subject he specializes in. Now Alex wonders whom he has to choose to maximize the total sum of skill levels of all delegates, or just skip the competition this year if every valid non-empty delegation has negative sum.(Of course, Alex doesn't have any spare money so each delegate he chooses must participate in the competition).InputThe first line contains two integers nn and mm (1≤n≤1051≤n≤105, 1≤m≤1051≤m≤105) — the number of candidates and the number of subjects.The next nn lines contains two integers per line: sisi and riri (1≤si≤m1≤si≤m, −104≤ri≤104−104≤ri≤104) — the subject of specialization and the skill level of the ii-th candidate.OutputPrint the single integer — the maximum total sum of skills of delegates who form a valid delegation (according to rules above) or 00 if every valid non-empty delegation has negative sum.ExamplesinputCopy6 3

2 6
3 6
2 5
3 5
1 9
3 1
outputCopy22
inputCopy5 3
2 6
3 6
2 5
3 5
1 11
outputCopy23
inputCopy5 2
1 -1
1 -5
2 -1
2 -1
1 -10
outputCopy0
NoteIn the first example it’s optimal to choose candidates 11, 22, 33, 44, so two of them specialize in the 22-nd subject and other two in the 33-rd. The total sum is 6+6+5+5=226+6+5+5=22.In the second example it’s optimal to choose candidates 11, 22 and 55. One person in each subject and the total sum is 6+6+11=236+6+11=23.In the third example it’s impossible to obtain a non-negative sum.



#include<bits/stdc++.h>

#include<iostream>

#include<algorithm>

using namespace std;

#define ll long long

ll ans;ll l;ll k,c;ll maxx;ll fi,se;

pair<ll,ll> p[1000000];

ll a[1000000];

int main()

{

   
int m,n;

   
while(cin>>m>>n)

    {

       
maxx=0;

       
memset(a,0,sizeof(a));

       
for(int i=0;i<m;i++)

       
{

           
cin>>fi>>se;

           
p[i]={fi,-se};

       
}

       
sort(p,p+m);

       
for(int i=0;i<m;i++)

       
{

           
if(p[i].first!=l)

           
{

                k=0;c=0;

                l=p[i].first;

           
}

           
k++;

           
c-=p[i].second;

           
if(c>0)

           
a[k]+=c;

           
maxx=max(maxx,a[k]);

       
}

       
cout<<maxx<<endl;

    }

 

   
return 0;

}


动态规划,用于最大值或者最小值,依赖于前面一次的情况。
每一次累加,保存到数组,由于后面总体数量可能少,个体多。
pair的使用,排序的一些小技巧。
要用一个变量累加一类的,数组下标,关联。

  • 注意清零
  • 为什么做不出来呢,嗯,因为没看题目,要会灵活使用STL,变量关联。
    其实还是比较简单的,可惜脑袋抽了。
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值