hashmap源码逐行解读基于jdk1.8

HashMap变量概览

private static final long serialVersionUID = 362498820763181265L;    
// 默认的初始容量是16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;   
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30; 
// 默认的填充因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 当链表的长度大于这个值时会转成红黑树
static final int TREEIFY_THRESHOLD = 8; 
// 当链表的长度小于这个值时树转链表
static final int UNTREEIFY_THRESHOLD = 6;
// 链表结构转化为红黑树对应的hash表的最小容量
static final int MIN_TREEIFY_CAPACITY = 64;
// hash表,总是2的幂次倍
transient Node<k,v>[] table; 
// 存放具体元素的集
transient Set<map.entry<k,v>> entrySet;
// 存放元素的个数,注意这个不等于数组的长度。(每put一个元素就会加1)
transient int size;
// 每次扩容和更改map结构的计数器
transient int modCount;   
// 阈值 当实际大小(容量*填充因子)超过阈值时,会进行扩容
int threshold;
// 填充因子
final float loadFactor;

hashmap实现:

  • jdk1.8中是数组+链表+红黑数
  • 从变量定义来看,链表转红黑树的条件是
    1. 链表长度>=8
    2. 哈希表长度大于64

但是从源码上看,链表长度>=8就会被树化

我先写如下一段代码,发现打印出来的数值为“b”

		HashMap<Integer, Object> hashMap = new HashMap<>();
        hashMap.put(1,"a");
        System.out.println(hashMap.put(1, "b"));

点进到put方法中,发现实质是调用了putval()

   public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

先看一遍putval()源码注释,看完代码有难点详解

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    //如果tab==null||tab长度为0,初始化tab
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
//如果hash表的当前位置没有元素,那么把元素放到这里
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
//如果这个位置有元素,接着往下面走
    else {
        Node<K,V> e; K k;
//这个位置的节点key与我们put进来的key相同,那么把这个位置的这个节点,先赋值给临时变量e    
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
//如果这个位置的节点是个树节点,那么把这个key value放进红黑树中
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//如果这个位置的节点是个链表的头节点,那么把这个key value放进链表中
        else {
//遍历链表
            for (int binCount = 0; ; ++binCount) {
//e = p.next 与p = e结合遍历链表,直至遍历到链表的末尾,p.next = newNode(hash, key, value, null)把key,value尾插到链表
                if ((e = p.next) == null) {
//当链表的长度达到了TREEIFY_THRESHOLD(树化的最小值)链表就会转化成红黑数      
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
//这个位置的节点key与我们put进来的key相同,那么把这个位置的这个节点,先赋值给临时变量e    ,e不是null,改变这个节点的value值,同时将旧的value返回出去        
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    //达到条件扩容
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}



Node<K,V>[] tab(哈希表:数组+链表组成的一种数据结构)
在这里插入图片描述

Node<K,V> p (链表节点)构造如下:

	//根据key计算出来的hash值
	final int hash;
	//key
	final K key;
	//value
	V value;
	//指向下一个节点的指针
	Node<K,V> next;

HashMap中的hash求法:

  1. key==null的情况下,hash = 0
  2. key!=null的情况下,hash = (h = key.hashCode()) ^ (h >>> 16),key的hashcode与key的hashcode右移16位做或运算,目的是减少hash冲突
static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

HashMap中的tab数组下标i(也叫做哈希槽)求法:

  1. (tab.length - 1 ) & hash 、哈希表长度 - 1 的结果与根据key求到的hash值做与运算(详情看算法一)
i = (n - 1) & hash

resize方法的作用:

  1. 扩容
  2. 初始化HashMap容量
n = (tab = resize()).length;

算法一:e.hash & (newCap - 1)

作用:假设hash表的长度为16(一定是2的幂次倍,目的就是为了使下标散列均匀),那么通过这个算法计算出来的下标一定在0到16之间

  • 如果初始化值如果不是2的n次方会发生什么?
  • 答:就拿初始化值是cap = 17举例,cap = 17那么散列出来的下标i = e.hash & (cap-1)、那么cap - 1 = 16、16转换成二进制为10000。随便一个hash值与10000进行&运算得到的结果只会是16、0。那么将会有大量的key堆砌在0、16这俩个槽位上面。

下面就来演示一波:假设hash表的长度(oldcap)为16,e.hash值为10(01010)
在这里插入图片描述

resize()

这个方法有俩个作用:

  1. 初始化哈希表
  2. 对哈希表进行扩容
final Node<K,V>[] resize() {
//定义一个当前的hash表(table就是当前存储元素的数组,总是2的幂次倍,因为默认容量是16,每次*2扩容)
        Node<K,V>[] oldTab = table;
//oldcap,当前hash表的容量(也就是hash表的长度)
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
//当前hash表的阈值
        int oldThr = threshold;
//扩容时需要用到的用于初始化新hash表的新容量与新阈值
        int newCap, newThr = 0;
//(扩容时执行:当前hash表的容量>0,不会走else if (oldThr > 0))和其配套的else)如果当前hash表的容量(长度)大于0
        if (oldCap > 0) {
//(扩容时执行)如果当前的hash表的长度大于了MAXIMUM_CAPACITY(最大容量,把Integer的最大值作为阈值)
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
 //(扩容时执行)           }
//newCap = oldCap << 1 意思:新hash表的容量(长度)为2倍大小旧的hash表的容量(长度)
//这里涉及到移位计算,例如:oldCap = 2 转换为二进制数为:10,左移一位为100。就是4
//如果当前的hash表的容量<允许的最大容量,且当前的hash表容量>初始化容量16,新阈值=老阈值*2
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
//(初始化时执行)如果老阈值>0,新容量 = 老阈值;由于此时的oldthr肯定为0,走下个else
        else if (oldThr > 0)
            newCap = oldThr;
//(初始化时执行)零初始阈值表示使用默认值(int oldThr = threshold一开始threshold没有进行赋值默认值是0)
        else {
//新容量 = 默认的容量
            newCap = DEFAULT_INITIAL_CAPACITY;
//新阈值=默认的加载因子*默认的初始化容量
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
//初始化或者更新阈值
//**初始化**:如果当前的阈值不大于0,threshold = newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY)
//**更新**:如果当前的hash表的阈值大于0且当前的hash表的长度<允许的最大长度,且当前的hash表容量>初始化容量16,新的阈值=当前阈值*2
        threshold = newThr;

//注意!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!这里正式开始扩容
        @SuppressWarnings({"rawtypes","unchecked"})
//定义一个新的hash表用于扩容,长度newCap由上面经过if else判断过的,newcap in {newCap = oldCap << 1 ,DEFAULT_INITIAL_CAPACITY }
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
//把新的hash表赋值给原来的hash表
        table = newTab;
//**如果是扩容!!!!**,接着向下执行,返回扩容后的数组
//**如果是初始化!!!!**,oldtab就是null,直接返回初始化长度的newtab数组,因此n就是值hash表的长度
        if (oldTab != null) {
//遍历原来的hash表
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
//如果此时的hash表的这个位置的节点!=null,且赋值给e,才可以接下来的操作的
                if ((e = oldTab[j]) != null) {
 //清空释放原来的hash表这个位置的节点的内存
                    oldTab[j] = null;
//如果这个节点只有一个元素,把这个节点放入通过e.hash & (newCap - 1)计算出的下标位置即可
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
//如果这个节点是树节点,split()根据高低位树化下面会讲               
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//如果这个节点不是树节点,向下执行
                    else { 
//定义低位的链表头节点,尾节点
                        Node<K,V> loHead = null, loTail = null;
//定义高位的链表头节点,尾节点
                        Node<K,V> hiHead = null, hiTail = null;
//定义用于遍历链表的中间变量
                        Node<K,V> next;
                        do {
//一开始,当低位的链表头节点为null,把hash表的这个位置的节点赋值给链表头节点loHead 
                                if (loTail == null)
                                    loHead = e;
//其他则,把hash表的这个位置的节点赋值给loTail尾节点,一开始头尾是在一起的
                                else
                                    loTail.next = e;
//最后把链表中每次遍历到的e,赋值给尾节点loTail,这里看着是不是很绕呢,下面有过程图解
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
//当低位尾节点不为null,说明对应的这个低位头节点的下标值可以是原来的下标值
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
//当高位尾节点不为null,说明对应的这个高位头节点的下标值可以是原来的下标值+oldcap
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

体现尾插的代码

                        do {
//一开始,当低位的链表头节点为null,把hash表的这个位置的节点赋值给链表头节点loHead 
                                if (loTail == null)
                                    loHead = e;
//其他则,把hash表的这个位置的节点赋值给loTail尾节点,一开始头尾是在一起的
                                else
                                    loTail.next = e;
//最后把链表中每次遍历到的e,赋值给尾节点loTail,这里看着是不是很绕呢,下面有过程图解
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
//当低位尾节点不为null,说明对应的这个低位头节点的下标值可以是原来的下标值
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
//当高位尾节点不为null,说明对应的这个高位头节点的下标值可以是原来的下标值+oldcap
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }

尾插图解基于低位来说

数组下标不变
在这里插入图片描述

我注释写的相当详细,值得注意的是这里面又有个比较巧妙的算法(e.hash & oldCap)与split()方法

算法二:e.hash & oldCap

  • 同一个key计算出来的hash值相同,经过e.hash & (tab.length - 1)运算,被放在同一个哈希槽下面
  • 每个哈希槽下面对应一个链表结构,且这个链表中的所有节点的key相同

确定旧链表在扩容之后的哈希表中的位置(每个哈希槽中的hash值与旧哈希表的长度做&运算):

  1. 如果结果为0,链表在扩容前后哈希表中的下标不变
  2. 如果算出来的值不是0,链表下标 = 扩容前链表中的位置+扩容前哈希表的长度

图右边解析:我假设初始的oldcap为8,那么扩容后的容量为16,此时根据算法一,用hash值5(00101)分别与初始的oldcap、扩容后的容量进行计算发现算出来的下标一模一样)

图左边图解:我假设初始的oldcap为8,那么扩容后的容量为16,此时根据算法一,用hash值5(01010)分别与初始的oldcap、扩容后的容量进行计算发现算出来的下标相差oldcap)

在这里插入图片描述

重要方法split()解析

作用:按照高低位区分,判断是否这个树节点要转换为红黑树,还是转重新转化为链表

else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);

我们点进去是这样的

 final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
            TreeNode<K,V> b = this;
//这段代码和resize中的那段效果差不多都是:重新链接到lo和hi列表,保持顺序,并且对高低位链表个数计数
            /*
            TreeNode<K,V> loHead = null, loTail = null;
            TreeNode<K,V> hiHead = null, hiTail = null;
            int lc = 0, hc = 0;
            for (TreeNode<K,V> e = b, next; e != null; e = next) {
                next = (TreeNode<K,V>)e.next;
                e.next = null;
                if ((e.hash & bit) == 0) {
                    if ((e.prev = loTail) == null)
                        loHead = e;
                    else
                        loTail.next = e;
                    loTail = e;
                    ++lc;
                }
                else {
                    if ((e.prev = hiTail) == null)
                        hiHead = e;
                    else
                        hiTail.next = e;
                    hiTail = e;
                    ++hc;
                }
            }
*/
//split中关键核心的代码在这:
//当链表的长度小于这个值(UNTREEIFY_THRESHOLD=6)时把所有树节点替换成node节点类型,变为单向链表
//否则链表转红黑树,那么让我们接下来看下untreeify()方法与treeify()方法把
static final int UNTREEIFY_THRESHOLD = 6;
            if (loHead != null) {
                if (lc <= UNTREEIFY_THRESHOLD)
                    tab[index] = loHead.untreeify(map);
                else {
                    tab[index] = loHead;
//如果高位链表为null,低位不为null,相当于移走整颗树,且对链表转树
                    if (hiHead != null) // (else is already treeified)
                        loHead.treeify(tab);
                }
            }
            if (hiHead != null) {
                if (hc <= UNTREEIFY_THRESHOLD)
                    tab[index + bit] = hiHead.untreeify(map);
                else {
                    tab[index + bit] = hiHead;
                    if (loHead != null)
                        hiHead.treeify(tab);
                }
            }
        }

untreeify()解析

作用:返回一个非treeNode的单向链表,替换从这个节点。(也就是去除红黑树的特性,把所有的节点替换成node节点
我们点进去代码是这样的

/**
         * Returns a list of non-TreeNodes replacing those linked from
         * this node.
         */
        final Node<K,V> untreeify(HashMap<K,V> map) {
            Node<K,V> hd = null, tl = null;
//循环替换成node节点
            for (Node<K,V> q = this; q != null; q = q.next) {
//replacementNode()也就是,根据q的key hash value new出来的一个新的node节点
//根据头节点q一直向下循环,同时创建一个新node赋值给p,p就成了头结点的下个、下下个一直到最后一个节点,同时赋值给tl,在tl.next = p;将其串起来(p一直是tl的下个节点)
                Node<K,V> p = map.replacementNode(q, null);
                if (tl == null)
                    hd = p;
                else
                    tl.next = p;
                tl = p;
            }
            return hd;
        }
// 用于从TreeNodes到普通节点的转换
    Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
        return new Node<>(p.hash, p.key, p.value, next);
    }

treeify()解析

思路,根据hash值一次次判断是在左还是右分支,判断是否存在key,找到位置,平衡红黑树
这里面主要涉及到红黑树那些特性,左旋、右旋、变色啥的内容有点多下次专门在写一篇博客来讲

/**
         * Forms tree of the nodes linked from this node.
         * @return root of tree
         */
        final void treeify(Node<K,V>[] tab) {
            TreeNode<K,V> root = null;
            for (TreeNode<K,V> x = this, next; x != null; x = next) {
                next = (TreeNode<K,V>)x.next;
                x.left = x.right = null;
                if (root == null) {
                    x.parent = null;
                    x.red = false;
                    root = x;
                }
                else {
                    K k = x.key;
                    int h = x.hash;
                    Class<?> kc = null;
                    for (TreeNode<K,V> p = root;;) {
                        int dir, ph;
                        K pk = p.key;
                        if ((ph = p.hash) > h)
                            dir = -1;
                        else if (ph < h)
                            dir = 1;
                        else if ((kc == null &&
                                  (kc = comparableClassFor(k)) == null) ||
                                 (dir = compareComparables(kc, k, pk)) == 0)
                            dir = tieBreakOrder(k, pk);

                        TreeNode<K,V> xp = p;
                        if ((p = (dir <= 0) ? p.left : p.right) == null) {
                            x.parent = xp;
                            if (dir <= 0)
                                xp.left = x;
                            else
                                xp.right = x;
//平衡树结构
                            root = balanceInsertion(root, x);
                            break;
                        }
                    }
                }
            }
            moveRootToFront(tab, root);
        }

那么到此put()中的所涉及到的重要的内容基本上全讲完了,那么大家按照我这个思路来分析下get()方法是不是超级简单了呢(不就是,如果hash表这个位置如果链表或者红黑树节点只有一个元素就直接查出来,否则遍历查出‘’‘’‘’)

  public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        if ((e = first.next) != null) {
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小咸鱼的技术窝

你的鼓励将是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值