HashMap变量概览
private static final long serialVersionUID = 362498820763181265L;
// 默认的初始容量是16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认的填充因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 当链表的长度大于这个值时会转成红黑树
static final int TREEIFY_THRESHOLD = 8;
// 当链表的长度小于这个值时树转链表
static final int UNTREEIFY_THRESHOLD = 6;
// 链表结构转化为红黑树对应的hash表的最小容量
static final int MIN_TREEIFY_CAPACITY = 64;
// hash表,总是2的幂次倍
transient Node<k,v>[] table;
// 存放具体元素的集
transient Set<map.entry<k,v>> entrySet;
// 存放元素的个数,注意这个不等于数组的长度。(每put一个元素就会加1)
transient int size;
// 每次扩容和更改map结构的计数器
transient int modCount;
// 阈值 当实际大小(容量*填充因子)超过阈值时,会进行扩容
int threshold;
// 填充因子
final float loadFactor;
hashmap实现:
- jdk1.8中是数组+链表+红黑数
- 从变量定义来看,链表转红黑树的条件是
- 链表长度>=8
- 哈希表长度大于64
但是从源码上看,链表长度>=8就会被树化
我先写如下一段代码,发现打印出来的数值为“b”
HashMap<Integer, Object> hashMap = new HashMap<>();
hashMap.put(1,"a");
System.out.println(hashMap.put(1, "b"));
点进到put方法中,发现实质是调用了putval()
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
先看一遍putval()源码注释,看完代码有难点详解
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
//如果tab==null||tab长度为0,初始化tab
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//如果hash表的当前位置没有元素,那么把元素放到这里
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
//如果这个位置有元素,接着往下面走
else {
Node<K,V> e; K k;
//这个位置的节点key与我们put进来的key相同,那么把这个位置的这个节点,先赋值给临时变量e
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//如果这个位置的节点是个树节点,那么把这个key value放进红黑树中
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
//如果这个位置的节点是个链表的头节点,那么把这个key value放进链表中
else {
//遍历链表
for (int binCount = 0; ; ++binCount) {
//e = p.next 与p = e结合遍历链表,直至遍历到链表的末尾,p.next = newNode(hash, key, value, null)把key,value尾插到链表
if ((e = p.next) == null) {
//当链表的长度达到了TREEIFY_THRESHOLD(树化的最小值)链表就会转化成红黑数
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//这个位置的节点key与我们put进来的key相同,那么把这个位置的这个节点,先赋值给临时变量e ,e不是null,改变这个节点的value值,同时将旧的value返回出去
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
//达到条件扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
Node<K,V>[] tab(哈希表:数组+链表组成的一种数据结构)
Node<K,V> p (链表节点)构造如下:
//根据key计算出来的hash值
final int hash;
//key
final K key;
//value
V value;
//指向下一个节点的指针
Node<K,V> next;
HashMap中的hash求法:
- key==null的情况下,hash = 0
- key!=null的情况下,hash = (h = key.hashCode()) ^ (h >>> 16),key的hashcode与key的hashcode右移16位做或运算,目的是减少hash冲突
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
HashMap中的tab数组下标i(也叫做哈希槽)求法:
- (tab.length - 1 ) & hash 、哈希表长度 - 1 的结果与根据key求到的hash值做与运算(详情看算法一)
i = (n - 1) & hash
resize方法的作用:
- 扩容
- 初始化HashMap容量
n = (tab = resize()).length;
算法一:e.hash & (newCap - 1)
作用:假设hash表的长度为16(一定是2的幂次倍,目的就是为了使下标散列均匀),那么通过这个算法计算出来的下标一定在0到16之间
- 如果初始化值如果不是2的n次方会发生什么?
- 答:就拿初始化值是cap = 17举例,cap = 17那么散列出来的下标i = e.hash & (cap-1)、那么cap - 1 = 16、16转换成二进制为10000。随便一个hash值与10000进行&运算得到的结果只会是16、0。那么将会有大量的key堆砌在0、16这俩个槽位上面。
下面就来演示一波:假设hash表的长度(oldcap)为16,e.hash值为10(01010)
resize()
这个方法有俩个作用:
- 初始化哈希表
- 对哈希表进行扩容
final Node<K,V>[] resize() {
//定义一个当前的hash表(table就是当前存储元素的数组,总是2的幂次倍,因为默认容量是16,每次*2扩容)
Node<K,V>[] oldTab = table;
//oldcap,当前hash表的容量(也就是hash表的长度)
int oldCap = (oldTab == null) ? 0 : oldTab.length;
//当前hash表的阈值
int oldThr = threshold;
//扩容时需要用到的用于初始化新hash表的新容量与新阈值
int newCap, newThr = 0;
//(扩容时执行:当前hash表的容量>0,不会走else if (oldThr > 0))和其配套的else)如果当前hash表的容量(长度)大于0
if (oldCap > 0) {
//(扩容时执行)如果当前的hash表的长度大于了MAXIMUM_CAPACITY(最大容量,把Integer的最大值作为阈值)
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
//(扩容时执行) }
//newCap = oldCap << 1 意思:新hash表的容量(长度)为2倍大小旧的hash表的容量(长度)
//这里涉及到移位计算,例如:oldCap = 2 转换为二进制数为:10,左移一位为100。就是4
//如果当前的hash表的容量<允许的最大容量,且当前的hash表容量>初始化容量16,新阈值=老阈值*2
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
//(初始化时执行)如果老阈值>0,新容量 = 老阈值;由于此时的oldthr肯定为0,走下个else
else if (oldThr > 0)
newCap = oldThr;
//(初始化时执行)零初始阈值表示使用默认值(int oldThr = threshold一开始threshold没有进行赋值默认值是0)
else {
//新容量 = 默认的容量
newCap = DEFAULT_INITIAL_CAPACITY;
//新阈值=默认的加载因子*默认的初始化容量
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
//初始化或者更新阈值
//**初始化**:如果当前的阈值不大于0,threshold = newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY)
//**更新**:如果当前的hash表的阈值大于0且当前的hash表的长度<允许的最大长度,且当前的hash表容量>初始化容量16,新的阈值=当前阈值*2
threshold = newThr;
//注意!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!这里正式开始扩容
@SuppressWarnings({"rawtypes","unchecked"})
//定义一个新的hash表用于扩容,长度newCap由上面经过if else判断过的,newcap in {newCap = oldCap << 1 ,DEFAULT_INITIAL_CAPACITY }
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
//把新的hash表赋值给原来的hash表
table = newTab;
//**如果是扩容!!!!**,接着向下执行,返回扩容后的数组
//**如果是初始化!!!!**,oldtab就是null,直接返回初始化长度的newtab数组,因此n就是值hash表的长度
if (oldTab != null) {
//遍历原来的hash表
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
//如果此时的hash表的这个位置的节点!=null,且赋值给e,才可以接下来的操作的
if ((e = oldTab[j]) != null) {
//清空释放原来的hash表这个位置的节点的内存
oldTab[j] = null;
//如果这个节点只有一个元素,把这个节点放入通过e.hash & (newCap - 1)计算出的下标位置即可
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
//如果这个节点是树节点,split()根据高低位树化下面会讲
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
//如果这个节点不是树节点,向下执行
else {
//定义低位的链表头节点,尾节点
Node<K,V> loHead = null, loTail = null;
//定义高位的链表头节点,尾节点
Node<K,V> hiHead = null, hiTail = null;
//定义用于遍历链表的中间变量
Node<K,V> next;
do {
//一开始,当低位的链表头节点为null,把hash表的这个位置的节点赋值给链表头节点loHead
if (loTail == null)
loHead = e;
//其他则,把hash表的这个位置的节点赋值给loTail尾节点,一开始头尾是在一起的
else
loTail.next = e;
//最后把链表中每次遍历到的e,赋值给尾节点loTail,这里看着是不是很绕呢,下面有过程图解
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
//当低位尾节点不为null,说明对应的这个低位头节点的下标值可以是原来的下标值
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
//当高位尾节点不为null,说明对应的这个高位头节点的下标值可以是原来的下标值+oldcap
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
体现尾插的代码
do {
//一开始,当低位的链表头节点为null,把hash表的这个位置的节点赋值给链表头节点loHead
if (loTail == null)
loHead = e;
//其他则,把hash表的这个位置的节点赋值给loTail尾节点,一开始头尾是在一起的
else
loTail.next = e;
//最后把链表中每次遍历到的e,赋值给尾节点loTail,这里看着是不是很绕呢,下面有过程图解
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
//当低位尾节点不为null,说明对应的这个低位头节点的下标值可以是原来的下标值
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
//当高位尾节点不为null,说明对应的这个高位头节点的下标值可以是原来的下标值+oldcap
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
尾插图解基于低位来说
数组下标不变
我注释写的相当详细,值得注意的是这里面又有个比较巧妙的算法(e.hash & oldCap)与split()方法
算法二:e.hash & oldCap
- 同一个key计算出来的hash值相同,经过e.hash & (tab.length - 1)运算,被放在同一个哈希槽下面
- 每个哈希槽下面对应一个链表结构,且这个链表中的所有节点的key相同
确定旧链表在扩容之后的哈希表中的位置(每个哈希槽中的hash值与旧哈希表的长度做&运算):
- 如果结果为0,链表在扩容前后哈希表中的下标不变
- 如果算出来的值不是0,链表下标 = 扩容前链表中的位置+扩容前哈希表的长度
图右边解析:我假设初始的oldcap为8,那么扩容后的容量为16,此时根据算法一,用hash值5(00101)分别与初始的oldcap、扩容后的容量进行计算发现算出来的下标一模一样)
图左边图解:我假设初始的oldcap为8,那么扩容后的容量为16,此时根据算法一,用hash值5(01010)分别与初始的oldcap、扩容后的容量进行计算发现算出来的下标相差oldcap)
重要方法split()解析
作用:按照高低位区分,判断是否这个树节点要转换为红黑树,还是转重新转化为链表
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
我们点进去是这样的
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
TreeNode<K,V> b = this;
//这段代码和resize中的那段效果差不多都是:重新链接到lo和hi列表,保持顺序,并且对高低位链表个数计数
/*
TreeNode<K,V> loHead = null, loTail = null;
TreeNode<K,V> hiHead = null, hiTail = null;
int lc = 0, hc = 0;
for (TreeNode<K,V> e = b, next; e != null; e = next) {
next = (TreeNode<K,V>)e.next;
e.next = null;
if ((e.hash & bit) == 0) {
if ((e.prev = loTail) == null)
loHead = e;
else
loTail.next = e;
loTail = e;
++lc;
}
else {
if ((e.prev = hiTail) == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
++hc;
}
}
*/
//split中关键核心的代码在这:
//当链表的长度小于这个值(UNTREEIFY_THRESHOLD=6)时把所有树节点替换成node节点类型,变为单向链表
//否则链表转红黑树,那么让我们接下来看下untreeify()方法与treeify()方法把
static final int UNTREEIFY_THRESHOLD = 6;
if (loHead != null) {
if (lc <= UNTREEIFY_THRESHOLD)
tab[index] = loHead.untreeify(map);
else {
tab[index] = loHead;
//如果高位链表为null,低位不为null,相当于移走整颗树,且对链表转树
if (hiHead != null) // (else is already treeified)
loHead.treeify(tab);
}
}
if (hiHead != null) {
if (hc <= UNTREEIFY_THRESHOLD)
tab[index + bit] = hiHead.untreeify(map);
else {
tab[index + bit] = hiHead;
if (loHead != null)
hiHead.treeify(tab);
}
}
}
untreeify()解析
作用:返回一个非treeNode的单向链表,替换从这个节点。(也就是去除红黑树的特性,把所有的节点替换成node节点)
我们点进去代码是这样的
/**
* Returns a list of non-TreeNodes replacing those linked from
* this node.
*/
final Node<K,V> untreeify(HashMap<K,V> map) {
Node<K,V> hd = null, tl = null;
//循环替换成node节点
for (Node<K,V> q = this; q != null; q = q.next) {
//replacementNode()也就是,根据q的key hash value new出来的一个新的node节点
//根据头节点q一直向下循环,同时创建一个新node赋值给p,p就成了头结点的下个、下下个一直到最后一个节点,同时赋值给tl,在tl.next = p;将其串起来(p一直是tl的下个节点)
Node<K,V> p = map.replacementNode(q, null);
if (tl == null)
hd = p;
else
tl.next = p;
tl = p;
}
return hd;
}
// 用于从TreeNodes到普通节点的转换
Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
return new Node<>(p.hash, p.key, p.value, next);
}
treeify()解析
思路,根据hash值一次次判断是在左还是右分支,判断是否存在key,找到位置,平衡红黑树
这里面主要涉及到红黑树那些特性,左旋、右旋、变色啥的内容有点多下次专门在写一篇博客来讲
/**
* Forms tree of the nodes linked from this node.
* @return root of tree
*/
final void treeify(Node<K,V>[] tab) {
TreeNode<K,V> root = null;
for (TreeNode<K,V> x = this, next; x != null; x = next) {
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;
if (root == null) {
x.parent = null;
x.red = false;
root = x;
}
else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
for (TreeNode<K,V> p = root;;) {
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
//平衡树结构
root = balanceInsertion(root, x);
break;
}
}
}
}
moveRootToFront(tab, root);
}
那么到此put()中的所涉及到的重要的内容基本上全讲完了,那么大家按照我这个思路来分析下get()方法是不是超级简单了呢(不就是,如果hash表这个位置如果链表或者红黑树节点只有一个元素就直接查出来,否则遍历查出‘’‘’‘’)
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}