RAG
文章平均质量分 95
该专栏涵盖RAG全流程,包括评估、多模态RAG、GraphRAG、Agentic RAG、文档权限管理等多工程化层面内容
还是码字踏实
多看多想多总结,多说多做多帮人。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
智能体平台Dify的RAG 架构
多策略检索:支持向量检索(余弦相似度)、关键词检索(TF-IDF)和全文检索(BM25)三路并行检索,提升召回率。从用户查询→多知识库检索→文档去重→重排序→阈值过滤→返回Top结果给LLM,形成端到端解决方案。原创 2026-01-19 15:25:10 · 770 阅读 · 0 评论 -
企业级 RAG 系统实战的建议
检索增强生成(Retrieval-Augmented Generation, RAG)已成为企业 AI 应用的核心技术。然而,从简单的概念验证到处理 2 万-5 万份企业文档的生产系统,其间的技术鸿沟远超大多数人的想象。本文基于真实的企业级 RAG 项目实践,深入剖析文档质量检测、层级化分块、混合检索、表格处理等关键技术环节,并提供可直接用于生产环境的代码实现。文中所述方案已在制药、金融、法律等受监管行业得到验证,能够将文档检索准确率从 62% 提升至 89%,同时保持可接受的响应延迟和成本。原创 2025-12-02 17:08:51 · 951 阅读 · 0 评论 -
ragflow项目源码解读之文本两阶段识别:ocr.py
本文介绍了OCR系统的两阶段架构设计及核心实现细节。系统采用检测-识别分离架构,TextDetector负责定位文本区域,TextRecognizer负责识别文本内容。核心类OCR协调整个流程,支持多GPU并行处理,包含智能排序、旋转识别等优化方法。TextDetector通过预处理、归一化和后处理实现高效文本检测。系统通过置信度过滤、阅读顺序恢复和竖排文字处理等技术创新,显著提升了OCR的准确率和适用性。原创 2025-11-27 22:56:58 · 1036 阅读 · 0 评论 -
LLM时代的表格问答TQA:任务、方法与评估的全面综述
本文综述了大语言模型时代表格问答(TQA)的研究进展。TQA旨在基于表格数据回答自然语言问题,涉及表格理解、复杂查询处理等核心挑战。文章系统梳理了TQA任务的多样性,包括表格表示形式、问题复杂度、答案格式、模态维度和领域设定。在建模方法上,重点探讨了视觉表格与文本表格的不同处理技术,以及针对复杂查询的微调与无微调方法。研究表明,视觉表格理解仍显著落后于文本表格,而工具增强的无微调方法在精确推理方面展现出优势。未来研究需进一步优化表格表示、提升多模态理解能力,并探索更高效的推理机制。原创 2025-11-24 21:32:24 · 1125 阅读 · 0 评论 -
基于BM25的金融文档智能解析:基于OCR和紧凑型视觉语言模型的多阶段字段提取技术深度解读
本文提出了一种多阶段金融文档解析框架,通过图像预处理、OCR转写、BM25页面检索和紧凑型视觉语言模型(VLM)提取四个步骤,有效解决了中小企业财务文档处理中的规模庞大、质量低下、多语言混杂和结构异构等问题。该框架采用8B参数的miniCPM-o 2.6模型,结合BM25检索算法,在保证准确率的同时显著降低了计算成本和延迟。实验表明,相比直接使用大型VLM,该方法在准确率提升8.8倍的同时,GPU成本降低到0.7%,延迟减少92.6%,为金融科技领域的文档智能处理提供了高效实用的解决方案。原创 2025-11-21 16:14:39 · 1599 阅读 · 0 评论 -
MonkeyOCR v1.5:解锁复杂文档解析的鲁棒性
1. 简化而高效的两阶段Pipeline: ○ 将复杂的多阶段流水线简化为两阶段 ○ 通过VLM联合预测布局和阅读顺序,增强视觉-结构一致性 ○ 在准确性和效率之间达到了新的平衡点2. 视觉一致性强化学习范式: ○ 首次系统性地应用GRPO算法于文档解析 ○ 提出"渲染-对比"机制作为奖励信号 ○ 显著减少了对大规模手工标注的依赖3. 复杂场景的系统性解决方案: ○ IDTP模块解决了表格内嵌图像问题 ○ TGTM模块实现了跨页/跨列表格的智能合并原创 2025-11-20 18:07:05 · 1064 阅读 · 0 评论 -
SQLBot智能问数系统深度解析:基于RAG的Text-to-SQL技术全景剖析
Text-to-SQL技术发展经历了从规则驱动到神经网络再到大型语言模型的演进过程,但当前仍面临模式理解、语义歧义和跨域泛化等挑战。SQLBot作为开源项目,通过检索增强生成(RAG)技术结合prompt工程,提供了轻量级智能问数解决方案。其核心流程包括问题预处理、数据源选择、模式检索与SQL生成四阶段,支持多种数据库并采用自定义M-Schema格式表示模式。该系统设计简洁,强调prompt驱动而非模型微调,具备开箱即用和可视化集成特点,为解决Text-to-SQL实际应用难题提供了新思路。原创 2025-11-17 21:45:50 · 1204 阅读 · 0 评论 -
RAG系统中的文档解析挑战
本文探讨了RAG系统中文档解析的关键性及技术演进。文档解析将非结构化文档转换为机器可理解格式,是RAG性能的基础。传统管道式架构模块化强但存在误差累积问题,而新兴视觉语言模型(VLM)虽能端到端解析却面临幻觉和计算成本挑战。文章重点分析了表格识别的多维挑战(如误检测、结构复杂性)及解决方案,包括多模态验证、后处理筛查和专用模型应用。混合架构结合了传统方法与VLM优势,成为当前主流趋势。文档解析质量直接影响RAG系统效果,需根据应用场景权衡准确性、效率与成本。原创 2025-11-17 00:30:28 · 1358 阅读 · 0 评论 -
query加强之深度解析ReDI:通过分解与解释增强query理解的推理方法
ReDI论文的主要贡献可以概括为:1. 理论贡献:证明了对于复杂查询,分解仍然是有效的方法,但需要配合解释来提升检索性能2. 方法创新:设计了三阶段pipeline(分解-解释-融合),针对稀疏和稠密检索定制化解释策略3. 数据资源:构建并开源了3403条真正需要多源推理的复杂查询数据集Coin4. 实用价值:通过知识蒸馏实现了生产级部署,使用8B模型达到或超越671B模型的性能原创 2025-11-16 21:36:34 · 721 阅读 · 0 评论 -
GraphSearch:图检索增强的深度搜索工作流
本文深入解读GraphSearch论文,提出了一种基于智能体的深度搜索工作流,显著提升了GraphRAG系统处理复杂查询的能力。GraphSearch通过模块化深度搜索管道(包含查询分解、上下文精炼等6个核心模块)和双通道检索策略,实现了多轮迭代和反思推理。该系统可无缝集成现有GraphRAG框架,在6个多跳QA基准上表现优异。论文详细剖析了技术背景、核心机制和实验验证,指出其计算成本和提示词依赖等局限,同时强调其即插即用的特性和作为GraphRAG发展方向的重要性,为知识密集型应用提供了实用解决方案。原创 2025-11-15 15:49:24 · 1324 阅读 · 0 评论 -
Doc-Researcher: 多模态文档深度研究系统的技术解析
系统通过深度多模态解析保留文档的视觉语义信息,支持跨模态和多粒度自适应检索,并采用迭代多智能体工作流进行深度研究。系统采用离线-在线架构,离线阶段解析文档为多粒度表示,在线阶段通过PlannerAgent分解查询,SearcherAgent执行多模态检索,RefinerAgent精炼证据。原创 2025-11-12 22:41:25 · 1206 阅读 · 1 评论 -
SmartResume简历信息抽取框架深度解析
摘要 本研究提出一种融合版面分析与高效大语言模型的简历解析框架,解决文档异构性、LLM高成本和评估标准化三大挑战。系统采用混合PDF解析与YOLOv10版面检测,将复杂布局转换为带行号索引的线性文本流。创新性地使用任务分解与索引指针机制,配合微调Qwen3-0.6B模型,在保持高准确率的同时显著降低延迟。通过两阶段自动评估协议实现细粒度性能度量,为工业级部署提供可靠支持。该方法已成功应用于阿里巴巴HR平台,实现实时高效的简历结构化处理。原创 2025-11-09 23:47:34 · 1249 阅读 · 0 评论 -
RAG论文详细解读:《检索增强生成(RAG)系统综述:技术、指标与挑战》
这篇论文对检索增强生成(RAG)系统进行了全面综述,分析了2020-2025年间的128篇高引研究。RAG结合外部检索与生成模型,能显著减少大语言模型的"幻觉"问题,在医疗、法律等高精度领域应用广泛。研究发现:RAG技术呈现加速增长态势,主要应用于知识密集型任务和开放域问答;文档拆分(chunking)策略因领域而异,检索机制从单一发展到混合模式;评估指标仍以传统NLP为主,缺乏统一标准。当前挑战包括检索质量、领域适配性和评估体系不足等问题。该综述为RAG技术发展提供了系统性参考。原创 2025-11-03 23:15:35 · 1895 阅读 · 0 评论 -
RAG系统评估自定义Pipeline:从理论到实践的完整指南
RAG系统评估面临性能、成本与延迟的多维度挑战,传统方法存在碎片化、高成本等问题。系统级Pipeline通过标准化评估流程、自动化数据生成和组件级分析,显著提升工程效率与系统可观测性。高质量评估数据集需包含问题、标准答案和元数据,采用JSONL格式便于处理。人工标注适用于专业领域但成本高昂,而基于LLM的自动化生成(如Ragas框架)可大幅降低时间成本,通过知识图谱构建和演化式生成产生多样化问题。Pipeline的建立支持持续评估、性能瓶颈定位和业务价值量化,为RAG系统优化提供数据支撑。原创 2025-10-27 14:42:40 · 1040 阅读 · 0 评论 -
RAG系统中的组合检索流程:从稀疏到密集的融合之道
摘要 本文系统分析了检索增强生成(RAG)中的组合检索技术。首先介绍了RAG系统的核心价值与工作流程,重点阐述了稀疏检索与密集检索两大技术路线。对于稀疏检索,详细解析了BM25算法的数学原理、参数设置和实际应用,并评估了其优缺点。在密集检索部分,探讨了双编码器架构的设计与实现,包括离线索引构建和在线查询处理流程。全文通过理论分析和技术对比,为构建高效RAG系统提供了全面的技术指南。原创 2025-10-26 22:33:49 · 424 阅读 · 0 评论 -
Rerank重排序:提升RAG系统检索准确率的关键技术
摘要 重排序(Reranking)是检索增强生成(RAG)系统中的关键环节,用于优化检索结果。它采用两阶段策略:第一阶段使用高效但精度较低的双编码器(Bi-Encoder)快速召回候选文档;第二阶段通过计算密集但更精准的交叉编码器(Cross-Encoder)对候选文档进行深度重排序。双编码器独立编码查询和文档,通过向量相似度快速匹配,适合海量数据;交叉编码器则联合处理查询和文档,利用注意力机制捕捉细粒度语义关联,显著提升排序准确性。两阶段结合平衡了速度与精度,显著提升RAG系统的检索质量,减少大模型的幻觉原创 2025-10-26 10:43:06 · 1249 阅读 · 0 评论 -
Ragas:RAG系统评估的自动化框架深度解析
RAG系统自动化评估框架Ragas研究 Ragas是一个专门用于评估检索增强生成(RAG)系统的开源框架,采用"无参考评估"的创新范式。该框架通过分解评估维度、利用LLM作为评估器,解决了传统RAG评估面临的成本高、指标不适用等问题。 核心特点:1、 组件化评估:分别评估检索质量(精确度、召回率)和生成质量(忠实度、相关性) 。2、自动化流程:通过LLM-as-a-Judge机制实现高效评估,减少人工标注。3、多数据支持:支持生产数据收集、合成数据生成和人工标注三种方式。原创 2025-10-24 18:43:10 · 1154 阅读 · 0 评论 -
LangChain官方RAG系统优化策略:从基础到高级的全面技术解析
检索增强生成(RAG)通过结合外部检索与语言模型生成,有效克服了LLM的知识局限性。本文基于LangChain官方指南,系统解析了RAG优化的五大核心环节:索引优化(文档分割、多表示索引、RAPTOR架构)、查询转换、路由策略、检索技术和生成优化。重点介绍了递归字符分割、父文档检索器、多向量检索等18项关键技术,并强调优化需遵循"评估-迭代"原则,根据实际场景权衡成本与性能。实践建议从基础RAG出发,通过真实用户查询建立评估体系,逐步引入分层索引、查询重写等高级策略。原创 2025-10-24 18:14:13 · 1533 阅读 · 0 评论 -
TruLens:基于LLM的RAG应用评估框架深度解析
TruLens是一个开源的LLM应用评估框架,通过"RAG三元组"体系(上下文相关性、答案相关性、事实基础性)系统化评估RAG应用质量。该框架采用模块化设计,包含插桩层、反馈函数和会话管理等核心组件,支持与LlamaIndex等主流框架集成。TruLens利用LLM作为评判者实现自动化评估,通过精心设计的提示词和聚合策略量化RAG性能,帮助开发者快速定位问题并优化模型。其技术特性包括框架无关性、细粒度追踪和实时反馈等,为LLM应用开发提供了可靠的评估解决方案。原创 2025-10-23 17:24:17 · 642 阅读 · 0 评论 -
RAG数据准备:维基百科知识库本地数据处理全流程技术详解
本文系统介绍了维基百科数据在构建RAG知识库中的全流程处理,包括数据获取、清洗与存储。主要内容包括:维基百科提供多种格式的数据转储文件(XML、SQL、JSON等),可通过wget或BitTorrent下载;使用WikiExtractor工具进行多进程并行处理,提取文本并去除标记语言;详细的数据清洗流程涵盖HTML实体解码、特殊页面过滤等步骤。文章还解析了维基百科XML文件结构和命名规范,为构建高质量的企业级知识库提供了完整技术参考。原创 2025-10-23 14:35:36 · 567 阅读 · 0 评论 -
LangChain 中追踪监控之 Tags 的深度解析与实战应用
本文深入探讨了LangChain框架中的tags机制。tags是元数据标记系统,以字符串列表形式存在,设计上具有可继承性、可过滤性和跨组件传播特性。作为RunnableConfig的核心组件,tags通过merge_configs函数实现合并去重,并通过CallbackManager传递给回调处理器。开发者可通过with_config方法静态添加tags,或在运行时动态配置,适用于LLM调用链的追踪与监控场景。tags机制为LangChain应用提供了强大的可观测性和调试能力。原创 2025-10-22 21:01:40 · 838 阅读 · 0 评论 -
RAG系统流程之PDF处理与FAISS向量库的深度解析与技术实践
文章首先分析了PDF文档的技术架构和内容提取的挑战,包括文本编码、表格识别和图像处理等难题。随后详细介绍了Unstructured库的核心设计理念,对比了三种处理策略(fast、hi_res、ocr_only)的优缺点及适用场景,并通过流程图展示了核心处理流程。最后深入解析了UnstructuredLightPipeline的实现源码,包括策略选择、YOLOX模型应用以及文件处理的核心逻辑。该技术方案能够有效解决PDF文档的结构化处理和语义检索问题,为大规模文档管理提供高效解决方案。原创 2025-10-22 19:44:47 · 1126 阅读 · 0 评论 -
RAG中解析文档之Unstructured文档处理库:深度解析报告
Unstructured是一个开源文档处理库,专注于将PDF、Word等非结构化文档转换为机器可读的格式。其核心优势在于语义感知的文档分割技术,能智能识别标题、正文等元素类型。该库支持多种处理策略:快速文本提取(Fast)、高精度视觉分析(Hi-Res)、纯OCR识别(OCR-Only)以及智能自动选择(Auto)。特别针对PDF处理,Unstructured整合了PDFMiner、Tesseract、Detectron2等技术栈,并支持表格提取等复杂功能。原创 2025-10-21 16:23:44 · 825 阅读 · 0 评论 -
RAG系统中的知识准备与索引构建:深入刨析细节
在RAG系统的整体架构中,知识准备与索引构建阶段是决定系统性能的基石。这个阶段通常发生在离线环节,主要包括以下核心步骤:数据集构建与准备、文档解析与结构化、知识索引构建。原创 2025-10-17 20:59:32 · 860 阅读 · 0 评论 -
LangChain框架完整指南:架构、生态与实践
LangChain通过模块化组件和标准化接口,简化了模型调用、数据检索、状态管理等复杂任务。.文章详细解析了六大核心模块:Model I/O(标准化模型交互)、Retrieval(完整RAG流程)、Chains(组件组合)、Memory(状态管理)、Agents(智能代理)和Callbacks(事件系统)。重点阐述了Runnable接口的统一抽象和LCEL声明式语法,以及框架的分层包结构和生产就绪特性。原创 2025-10-02 17:11:34 · 1176 阅读 · 0 评论 -
大语言模型部署完整指南:从0到1傻瓜式全流程梳理
大模型部署技术指南摘要 本指南系统性地介绍了大语言模型(LLM)的部署全流程,涵盖硬件评估、框架选择、API标准、模型下载和生产部署等核心环节。 硬件评估部分详细解析了显存计算公式,包括模型参数量、精度格式和KV缓存的影响,并提供了Llama-7B等主流模型的显存需求参考。 部署框架章节对比了vLLM、SGLang、FastChat等5种主流方案,重点分析了vLLM的PagedAttention技术和SGLang的结构化生成优势。 API标准化部分阐述了OpenAI兼容接口的设计规范,包括端点路径、请求格式原创 2025-10-01 18:51:07 · 971 阅读 · 0 评论
分享