Agent
文章平均质量分 96
该专栏包含设计方式、框架选择、企业级开发、底层原理、MCP、A2A协议等
还是码字踏实
多看多想多总结,多说多做多帮人。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
智能体平台Dify的可观测性与MCP
本文介绍了Tracing集成架构的完整链路,从用户请求到监控上报的全流程。架构分为四个阶段:1)工作流执行阶段通过事件监听记录执行数据;2)追踪任务异步入队阶段实现业务与监控解耦;3)定时聚合阶段每5秒批量处理100个任务;4)Celery异步上报阶段完成数据持久化和Langfuse云端上报。关键设计包括非侵入式事件监听、分布式追踪支持(external_trace_id)、全局内存队列实现快速入队,以及异常容错机制确保业务不受监控失败影响。整个流程在保证系统性能的同时,实现了完整的可观测性数据采集。原创 2026-01-23 15:54:24 · 666 阅读 · 0 评论 -
智能体平台Dify的 分布式调度与系统吞吐优化
本文解析了基于Celery和Redis的异步任务分发完整链路,适用于GitHub Webhook触发代码审查工作流的场景。流程分为三个阶段:1) 同步接收请求并验证入队(毫秒级),包括配额检查、队列选择和任务存储;2) Worker异步处理(秒/分钟级),通过阻塞式拉取任务、执行LLM调用等耗时操作;3) 可选的结果查询阶段。关键实现包括非阻塞设计、状态追踪机制和基于订阅等级的队列路由策略,通过Flask API、Celery Worker和PostgreSQL的协同实现高效的任务分发与执行。原创 2026-01-22 17:15:13 · 715 阅读 · 0 评论 -
智能体平台Dify的 模型接口与 Agent 架构深度解析
1、系统架构流程:从用户请求入口到初始化Agent实例,再到工具调用和结果整合的全链路。2、关键技术点:请求接收与Agent初始化过程历史对话组织与工具回调机制知识库检索工具的动态加载流式工具调用支持判断3、代码级实现细节:展示了BaseAgentRunner和FunctionCallAgentRunner的核心初始化逻辑,包含关键参数说明和功能注释原创 2026-01-21 19:03:14 · 671 阅读 · 0 评论 -
智能体平台Dify的 多租户安全模型与沙箱隔离
租户隔离通过tenant_id实现数据库行级隔离,沙箱隔离采用物理隔离技术(Docker网络/文件系统),向量库隔离使用group_id实现向量Payload级过滤。原创 2026-01-20 21:49:42 · 685 阅读 · 0 评论 -
智能体平台Dify的 Dify Sandbox 代码沙箱的请求处理流程
本文详细分析了Dify沙箱服务的完整处理流程和源码实现。服务启动阶段会初始化配置、安装依赖并启动HTTP服务器。路由层通过中间件实现API Key认证、请求数限制和并发控制。核心执行流程包括:代码加密、临时文件生成、沙箱环境初始化、系统调用白名单过滤、降权执行用户代码,并捕获输出结果。安全机制采用Seccomp BPF过滤器、chroot隔离和nobody用户降权,确保代码执行在严格受限的环境中。原创 2026-01-20 21:09:56 · 638 阅读 · 0 评论 -
智能体平台Dify的RAG 架构
多策略检索:支持向量检索(余弦相似度)、关键词检索(TF-IDF)和全文检索(BM25)三路并行检索,提升召回率。从用户查询→多知识库检索→文档去重→重排序→阈值过滤→返回Top结果给LLM,形成端到端解决方案。原创 2026-01-19 15:25:10 · 754 阅读 · 0 评论 -
智能体平台Dify的工作流引擎:事件驱动 DAG 与变量池架构
Dify 工作流引擎采用事件驱动架构和领域驱动设计。核心特点包括:邻接表+动态入度检查的 DAG 调度、双层哈希变量池、PostgreSQL 持久化存储、Worker 并行+Dispatcher 串行的并发控制,以及基于 Layer 系统的资源管控。原创 2026-01-15 17:19:05 · 628 阅读 · 0 评论 -
智能体平台Dify的架构详解
系统采用前后端分离设计,前端(Next.js)通过可视化Canvas生成标准JSON DSL,后端(Flask)专注于DSL解析和执行引擎处理。核心架构包含用户层、API层(Celery异步任务)和持久化层(PostgreSQL),实现了任务队列分流、协程优化和多租户隔离。系统支持DSL版本化管理,通过工厂模式动态加载节点类型,具有高度可扩展性。Flask负责轻量API处理,Celery处理重计算任务,Redis作为消息总线和缓存,PostgreSQL存储DSL、执行日志和向量数据。原创 2026-01-13 21:37:15 · 782 阅读 · 0 评论 -
MonkeyOCR v1.5:解锁复杂文档解析的鲁棒性
1. 简化而高效的两阶段Pipeline: ○ 将复杂的多阶段流水线简化为两阶段 ○ 通过VLM联合预测布局和阅读顺序,增强视觉-结构一致性 ○ 在准确性和效率之间达到了新的平衡点2. 视觉一致性强化学习范式: ○ 首次系统性地应用GRPO算法于文档解析 ○ 提出"渲染-对比"机制作为奖励信号 ○ 显著减少了对大规模手工标注的依赖3. 复杂场景的系统性解决方案: ○ IDTP模块解决了表格内嵌图像问题 ○ TGTM模块实现了跨页/跨列表格的智能合并原创 2025-11-20 18:07:05 · 1049 阅读 · 0 评论 -
MosaicDoc:面向视觉丰富文档理解的大规模双语基准数据集深度解析
MosaicDoc数据集和DocWeaver流水线,解决了文档理解领域的关键挑战。针对现有数据集布局简单、语言单一、阅读顺序标注缺失等问题,MosaicDoc提供72,000+图像和620,000+双语问答对,专门针对报纸杂志等复杂布局文档。DocWeaver创新性地采用多智能体协作流水线,实现文档分解、复杂阅读顺序建模和高保真QA生成。核心技术包括HTML对齐方法、语义序列与布局层次混合策略,以及视觉中心流水线,有效处理了非线性布局、跨页关联和多模态融合等难题。原创 2025-11-19 23:29:41 · 895 阅读 · 0 评论 -
突破泛化瓶颈:智能运维 Agent 评测体系的理论与实践深度解析
本文探讨了智能运维(AIOps)的技术演进路径及泛化挑战,系统分析了从规则系统、算法增强到大模型工作流和智能Agent的四阶段发展。研究发现,早期方案存在环境敏感、参数调优难等问题,而大模型虽展现出潜力,却面临幻觉、执行可靠性等新挑战。阿里云通过构建评测体系,提出需平衡算法适配性、工具规范化和提示工程优化,为智能运维的落地实践提供了系统性解决方案。原创 2025-10-29 21:23:46 · 460 阅读 · 0 评论 -
LangChain 中追踪监控之 Tags 的深度解析与实战应用
本文深入探讨了LangChain框架中的tags机制。tags是元数据标记系统,以字符串列表形式存在,设计上具有可继承性、可过滤性和跨组件传播特性。作为RunnableConfig的核心组件,tags通过merge_configs函数实现合并去重,并通过CallbackManager传递给回调处理器。开发者可通过with_config方法静态添加tags,或在运行时动态配置,适用于LLM调用链的追踪与监控场景。tags机制为LangChain应用提供了强大的可观测性和调试能力。原创 2025-10-22 21:01:40 · 838 阅读 · 0 评论 -
LangChain框架完整指南:架构、生态与实践
LangChain通过模块化组件和标准化接口,简化了模型调用、数据检索、状态管理等复杂任务。.文章详细解析了六大核心模块:Model I/O(标准化模型交互)、Retrieval(完整RAG流程)、Chains(组件组合)、Memory(状态管理)、Agents(智能代理)和Callbacks(事件系统)。重点阐述了Runnable接口的统一抽象和LCEL声明式语法,以及框架的分层包结构和生产就绪特性。原创 2025-10-02 17:11:34 · 1171 阅读 · 0 评论
分享