11. 大模型的蒸馏技术

        数据蒸馏(Knowledge Distillation,KD)是一种从2015年开始业内常见的技术做法,是指通过一系列算法和策略,将原始的、复杂的模型进行去噪、降维、提炼等操作,从而得到更为精炼、有用的模型。

        数据蒸馏旨在压缩模型规模、降低计算成本,同时尽可能保持模型性能。目的是将复杂模型(教师模型)的知识提炼到简单模型(学生模型)。

1. 核心原理

  • 知识迁移:教师模型通过自身的预测输出(软标签)或中间特征,指导学生模型学习其决策逻辑,而非单纯模仿输入-输出映射。

  • 软标签(Soft Labels):教师模型输出的概率分布(通常经过温度缩放)包含类别间的关系信息(如“猫”与“老虎”的相似性),比硬标签(One-hot编码)更丰富。

  • 温度参数(Temperature):在Softmax函数中引入温度参数,调整概率分布的平滑度。高温使分布更平滑,凸显类别间关系;低温恢复原始分布。

2. 关键技术

(1) 模型结构设计
  • 教师模型:通常为参数量大的预训练模型(如BERT、GPT、ResNet)。

  • 学生模型:结构更简单的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

啊波次得饿佛哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值