高速公路

小明所在的国家有 n个城市,现在需要在城市之间修高速公路,有 m条修路的方案,每个方案表示
a, b城市之间修一条限速为 c的高速公路。小明希望从这 m个方案中选出若干方法试行,能够让 n 座城市联通,并且希望所有高速公路中最高限速和最低限速的差值最小。  输入格式: 第一行输入两个整数 n,m(2≤n≤100,1≤m≤n(n−1)/2),表示有 n个城市,m条修
路方案。两个城市之间可能会有多条修路方案。  接下来输入 m行,每行输入三个整数 a,b,c(1≤a,b≤n,0≤c≤1,0000)。  输出格式:如果修路方案不能让 n个城市之间联通,输出 -1,否者输出最小的差值。
 样例输入
 4 4
 1 2 2
 2 3 4
 1 4 1
 3 4 2
 样例输出
 1

这道题其实是最小生成树的一道延伸题,首先讲一个关于最小生成树中的性质:

最大边权最小的生成树
 给定一个无向连通图,求出它所有生成树中最大边权最小的一棵。
 解法:很多同学会下意识地想到二分,枚举生成树的边权上界之后判定是否存在边权
不超过限制的生成树,最终得到答案。当然这么做是可行的,但实际上,你只需要使
用 Kruskal 或 Prim 求出图的最小生成树就可以了。因为最小生成树中的最大边权一
定是所有生成树中最大边权中最小的。

例题 3:边权极差最小生成树
 给定一个无向连通图,求出它所有生成树中,最大边权和最小边权之差最小的生成树。  解法:利用例题 1 中给出的性质,枚举生成树上的最小边权 minw,计算边权最小为
minw 的最小生成树,用当前最小生成树的最大边减去最小边来更新最终答案。

直接上代码

#include <iostream>
#include <algorithm>
#include <string.h>
#include <math.h>
using namespace std;
const int MAX_N=10000;
const int MAX_M=10000;
const int inf=0x3f3f3f3f;
int n,m;
struct edge{
    int u;int v;double w;
}eid[MAX_M];
int ans=1;

bool cmp(edge& a,edge& b){
    return a.w<b.w;
}

int fa[MAX_N];
int ancestor(int x){
    if(fa[x]==x) return fa[x];
    else return fa[x]=ancestor(fa[x]);
}

int same(int x,int y){
    return ancestor(x)==ancestor(y);
}

void merge(int x,int y){
    int fax=ancestor(x);
    int fay=ancestor(y);
    fa[fax]=fay;
}

struct LOC{
    int x;
    int y;
}loc[MAX_N];

void init_father(int n){
    for(int i=1;i<=n;++i){
        fa[i]=i;
    }
}
int main() {
    cin>>n>>m;
    for(int i=1;i<=m;++i){
        int u,v,w;
        cin>>u>>v>>w;
        eid[ans].u=u;
        eid[ans].v=v;
        eid[ans++].w=w;
    }

    int result=inf;
    sort(eid+1,eid+m+1,cmp);
    for(int i=1;i<=m-(n-1)+1;i++){
        int left=n;
        int totle=0;
        init_father(n);
        for(int j=i;j<=m && left>1;++j){
            if(same(eid[j].u,eid[j].v))
                continue;
            else{
                merge(eid[j].u,eid[j].v);
                left--;
                totle+=eid[j].w;
            }
            if(left==1){
                result=result< (eid[j].w-eid[i].w)? result:(eid[j].w-eid[i].w);
            }
        }
    }

    if(result!=inf)
        cout<<result<<endl;
    else
        cout<<-1;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值