小明所在的国家有 n个城市,现在需要在城市之间修高速公路,有 m条修路的方案,每个方案表示
a, b城市之间修一条限速为 c的高速公路。小明希望从这 m个方案中选出若干方法试行,能够让 n 座城市联通,并且希望所有高速公路中最高限速和最低限速的差值最小。 输入格式: 第一行输入两个整数 n,m(2≤n≤100,1≤m≤n(n−1)/2),表示有 n个城市,m条修
路方案。两个城市之间可能会有多条修路方案。 接下来输入 m行,每行输入三个整数 a,b,c(1≤a,b≤n,0≤c≤1,0000)。 输出格式:如果修路方案不能让 n个城市之间联通,输出 -1,否者输出最小的差值。
样例输入
4 4
1 2 2
2 3 4
1 4 1
3 4 2
样例输出
1
这道题其实是最小生成树的一道延伸题,首先讲一个关于最小生成树中的性质:
最大边权最小的生成树
给定一个无向连通图,求出它所有生成树中最大边权最小的一棵。
解法:很多同学会下意识地想到二分,枚举生成树的边权上界之后判定是否存在边权
不超过限制的生成树,最终得到答案。当然这么做是可行的,但实际上,你只需要使
用 Kruskal 或 Prim 求出图的最小生成树就可以了。因为最小生成树中的最大边权一
定是所有生成树中最大边权中最小的。
例题 3:边权极差最小生成树
给定一个无向连通图,求出它所有生成树中,最大边权和最小边权之差最小的生成树。 解法:利用例题 1 中给出的性质,枚举生成树上的最小边权 minw,计算边权最小为
minw 的最小生成树,用当前最小生成树的最大边减去最小边来更新最终答案。
直接上代码
#include <iostream>
#include <algorithm>
#include <string.h>
#include <math.h>
using namespace std;
const int MAX_N=10000;
const int MAX_M=10000;
const int inf=0x3f3f3f3f;
int n,m;
struct edge{
int u;int v;double w;
}eid[MAX_M];
int ans=1;
bool cmp(edge& a,edge& b){
return a.w<b.w;
}
int fa[MAX_N];
int ancestor(int x){
if(fa[x]==x) return fa[x];
else return fa[x]=ancestor(fa[x]);
}
int same(int x,int y){
return ancestor(x)==ancestor(y);
}
void merge(int x,int y){
int fax=ancestor(x);
int fay=ancestor(y);
fa[fax]=fay;
}
struct LOC{
int x;
int y;
}loc[MAX_N];
void init_father(int n){
for(int i=1;i<=n;++i){
fa[i]=i;
}
}
int main() {
cin>>n>>m;
for(int i=1;i<=m;++i){
int u,v,w;
cin>>u>>v>>w;
eid[ans].u=u;
eid[ans].v=v;
eid[ans++].w=w;
}
int result=inf;
sort(eid+1,eid+m+1,cmp);
for(int i=1;i<=m-(n-1)+1;i++){
int left=n;
int totle=0;
init_father(n);
for(int j=i;j<=m && left>1;++j){
if(same(eid[j].u,eid[j].v))
continue;
else{
merge(eid[j].u,eid[j].v);
left--;
totle+=eid[j].w;
}
if(left==1){
result=result< (eid[j].w-eid[i].w)? result:(eid[j].w-eid[i].w);
}
}
}
if(result!=inf)
cout<<result<<endl;
else
cout<<-1;
}