先说说原理。本地过程调用RPC就是要像调用本地的函数一样去调远程函数。在研究RPC前,我们先看看本地调用是怎么调的。假设我们要调用函数Multiply来计算lvalue * rvalue的结果:
int Multiply(int l, int r) {
int y = l * r;
return y;
}
int lvalue = 10;
int rvalue = 20;
int l_times_r = Multiply(lvalue, rvalue);
那么在第8行时,我们实际上执行了以下操作:
将 lvalue 和 rvalue 的值压栈进入Multiply函数,
取出栈中的值10 和 20,将其赋予 l 和 r执行第2行代码,计算 l * r ,并将结果存在 y将 y 的值压栈,然后从Multiply返回第8行,从栈中取出返回值 200 ,并赋值给 l_times_r以上5步就是执行本地调用的过程。
(20190116注:以上步骤只是为了说明原理。事实上编译器经常会做优化,对于参数和返回值少的情况会直接将其存放在寄存器,而不需要压栈弹栈的过程,甚至都不需要调用call,而直接做inline操作。仅就原理来说,这5步是没有问题的。)远程过程调用带来的新问题在远程调用时,我们需要执行的函数体是在远程的机器上的,也就是说,Multiply是在另一个进程中执行的。这就带来了几个新问题:
Call ID映射。我们怎么告诉远程机器我们要调用Multiply,而不是Add或者FooBar呢?在本地调用中,函数体是直接通过函数指针来指定的,我们调用Multiply,编译器就自动帮我们调用它相应的函数指针。但是在远程调用中,函数指针是不行的,因为两个进程的地址空间是完全不一样的。所以,在RPC中,所有的函数都必须有自己的一个ID。这个ID在所有进程中都是唯一确定的。客户端在做远程过程调用时,必须附上这个ID。然后我们还需要在客户端和服务端分别维护一个 {函数 <–> Call ID} 的对应表。两者的表不一定需要完全相同,但相同的函数对应的Call ID必须相同。当客户端需要进行远程调用时,它就查一下这个表,找出相应的Call ID,然后把它传给服务端,服务端也通过查表,来确定客户端需要调用的函数,然后执行相应函数的代码。
序列化和反序列化。客户端怎么把参数值传给远程的函数呢?在本地调用中,我们只需要把参数压到栈里,然后让函数自己去栈里读就行。但是在远程过程调用时,客户端跟服务端是不同的进程,不能通过内存来传递参数。甚至有时候客户端和服务端使用的都不是同一种语言(比如服务端用C++,客户端用Java或者Python)。这时候就需要客户端把参数先转成一个字节流,传给服务端后,再把字节流转成自己能读取的格式。这个过程叫序列化和反序列化。同理,从服务端返回的值也需要序列化反序列化的过程。
网络传输。远程调用往往用在网络上,客户端和服务端是通过网络连接的。所有的数据都需要通过网络传输,因此就需要有一个网络传输层。网络传输层需要把Call ID和序列化后的参数字节流传给服务端,然后再把序列化后的调用结果传回客户端。只要能完成这两者的,都可以作为传输层使用。因此,它所使用的协议其实是不限的,能完成传输就行。尽管大部分RPC框架都使用TCP协议,但其实UDP也可以,而gRPC干脆就用了HTTP2。Java的Netty也属于这层的东西。有了这三个机制,就能实现RPC了,具体过程如下:
// Client端
// int l_times_r = Call(ServerAddr, Multiply, lvalue, rvalue)
- 将这个调用映射为Call ID。这里假设用最简单的字符串当Call ID的方法
- 将Call ID,lvalue和rvalue序列化。可以直接将它们的值以二进制形式打包
- 把2中得到的数据包发送给ServerAddr,这需要使用网络传输层
- 等待服务器返回结果
- 如果服务器调用成功,那么就将结果反序列化,并赋给l_times_r
// Server端
- 在本地维护一个Call ID到函数指针的映射call_id_map,可以用std::map<std::string, std::function<>>
- 等待请求
- 得到一个请求后,将其数据包反序列化,得到Call ID
- 通过在call_id_map中查找,得到相应的函数指针
- 将lvalue和rvalue反序列化后,在本地调用Multiply函数,得到结果
- 将结果序列化后通过网络返回给Client
所以要实现一个RPC框架,其实只需要按以上流程实现就基本完成了。其中:Call ID映射可以直接使用函数字符串,也可以使用整数ID。映射表一般就是一个哈希表。序列化反序列化可以自己写,也可以使用Protobuf或者FlatBuffers之类的。网络传输库可以自己写socket,或者用asio,ZeroMQ,Netty之类。当然,这里面还有一些细节可以填充,比如如何处理网络错误,如何防止攻击,如何做流量控制,等等。但有了以上的架构,这些都可以持续加进去。最后,有兴趣的可以看我们自己写的一个小而精的RPC库 Remmy(hjk41/Remmy),对于理解RPC如何工作很有好处。