给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。
算法的时间复杂度应该为 O(log (m+n)) 。
示例 1:
输入:nums1 = [1,3], nums2 = [2] 输出:2.00000 解释:合并数组 = [1,2,3] ,中位数 2
示例2:输入:nums1 = [1,2], nums2 = [3,4] 输出:2.50000 解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5
class Solution {
public double findMedianSortedArrays(int[] nums1, int[] nums2) {
int len1 = nums1.length;
int len2 = nums2.length;
int left = (len1 + len2 + 1) / 2;
int right = (len1 + len2 + 2) / 2;
return (getKth(nums1, 0, len1 - 1, nums2, 0, len2 - 1, left) +
getKth(nums1, 0, len1 - 1, nums2, 0, len2 - 1, right)) * 0.5;
}
// 寻找第K大的数
private int getKth(int[] nums1, int start1, int end1, int[] nums2, int start2, int end2, int k){
int len1 = end1 - start1 + 1;
int len2 = end2 - start2 + 1;
// 保证nums1 为长度小的数组
if(len1 > len2){
return getKth(nums2, start2, end2, nums1, start1, end1, k);
}
if(len1 == 0){
return nums2[start2 - 1 + k];
}
if(k == 1){
return Math.min(nums1[start1], nums2[start2]);
}
int i = start1 + Math.min(len1, k / 2) - 1;
int j = start2 + Math.min(len2, k / 2) - 1;
if(nums1[i] > nums2[j]){
return getKth(nums1, start1, end1, nums2, j + 1, end2, k - (j - start2 + 1));
}else{
return getKth(nums1, i + 1, end1, nums2, start2, end2, k - (i - start1 + 1));
}
}
}