【算法】寻找两个正序数组的中位数

给定两个大小分别为 m 和 n 的正序(从小到大)数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。

算法的时间复杂度应该为 O(log (m+n)) 。

示例 1:

输入:nums1 = [1,3], nums2 = [2] 输出:2.00000 解释:合并数组 = [1,2,3] ,中位数 2
示例2:

输入:nums1 = [1,2], nums2 = [3,4] 输出:2.50000 解释:合并数组 = [1,2,3,4] ,中位数 (2 + 3) / 2 = 2.5

class Solution {
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
          int len1 = nums1.length;
          int len2 = nums2.length;

          int left = (len1 + len2 + 1) / 2;
          int right = (len1 + len2 + 2) / 2;

          return (getKth(nums1, 0, len1 - 1, nums2, 0, len2 - 1, left) + 
          getKth(nums1, 0, len1 - 1, nums2, 0, len2 - 1, right)) * 0.5;
    }
    // 寻找第K大的数
   private int getKth(int[] nums1, int start1, int end1, int[] nums2, int start2, int end2, int k){
       int len1 = end1 - start1 + 1;
       int len2 = end2 - start2 + 1;
		// 保证nums1 为长度小的数组
       if(len1 > len2){
           return getKth(nums2, start2, end2, nums1, start1, end1, k);
       }
       if(len1 == 0){
           return nums2[start2 - 1 + k];
       }
       if(k == 1){
           return Math.min(nums1[start1], nums2[start2]);
       }

       int i = start1 + Math.min(len1, k / 2) - 1;
       int j = start2 + Math.min(len2, k / 2) - 1;

       if(nums1[i] > nums2[j]){
           return getKth(nums1, start1, end1, nums2, j + 1, end2, k - (j - start2 + 1));
       }else{
           return getKth(nums1, i + 1, end1, nums2, start2, end2, k - (i - start1 + 1));
       }
   }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值