数据聚合与分组运算(一)

本文介绍了pandas的GroupBy机制,包括分组、应用函数和合并操作,用于数据集的切片、切块和摘要分析。通过示例展示了如何按一个或多个键进行分组,计算分组统计,以及进行透视表和时间序列的重采样分析。GroupBy对象允许延迟计算,提供灵活的数据处理方式。
摘要由CSDN通过智能技术生成

对数据集进行分组并对各组应用一个函数,通常是数据分析工作中的重要环节。在将数据集加载、融合、准备好之后,通常就是计算分组统计或生成透视表。pandas提供了一个灵活高效的gruopby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。

=====================================
本系列内容:使用一个或多个键(形式可以是函数、数组或DataFrame列名)分割pandas对象。计算分组的概述统计。 应用组内转换或其他运算。 计算透视表或交叉表。 执行分位数分析以及其它统计分组分析。

对时间序列数据的聚合(groupby的特殊用法之一)也称作重采样

GroupBy机制

一个用于表示分组运算的术语"split-apply-combine"(拆分-应用-合并)。第一个阶段,pandas对象(无论 是Series、DataFrame还是其他的)中的数据会根据你所提供的一个或多个键被拆分(split)为多组。拆分操作是在对象的特定轴上执行的。然后,将一个函数应用(apply)到 各个分组并产生一个新值。最后,所有这些函数的执行结果会被合并(combine) 到最终的结果对象中。结果对象的形式一般取决于数据上所执行的操作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值