对数据集进行分组并对各组应用一个函数,通常是数据分析工作中的重要环节。在将数据集加载、融合、准备好之后,通常就是计算分组统计或生成透视表。pandas提供了一个灵活高效的gruopby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要等操作。
=====================================
本系列内容:使用一个或多个键(形式可以是函数、数组或DataFrame列名)分割pandas对象。计算分组的概述统计。 应用组内转换或其他运算。 计算透视表或交叉表。 执行分位数分析以及其它统计分组分析。
对时间序列数据的聚合(groupby的特殊用法之一)也称作重采样
GroupBy机制
一个用于表示分组运算的术语"split-apply-combine"(拆分-应用-合并)。第一个阶段,pandas对象(无论 是Series、DataFrame还是其他的)中的数据会根据你所提供的一个或多个键被拆分(split)为多组。拆分操作是在对象的特定轴上执行的。然后,将一个函数应用(apply)到 各个分组并产生一个新值。最后,所有这些函数的执行结果会被合并(combine) 到最终的结果对象中。结果对象的形式一般取决于数据上所执行的操作。