【python】DataFrame.groupby()聚合,分组级运算

pandas提供了一个灵活高效的groupby功能,它使你能以一种自然的方式对数据集进行切片、切块、摘要

等操作。根据一个或多个键(可以是函数、数组或DataFrame列名)拆分pandas对象。计算分组摘要统

计,如计数、平均值、标准差,或用户自定义函数。对DataFrame的列应用各种各样的函数。应用组内转换

或其他运算,如规格化、线性回归、排名或选取子集等。计算透视表或交叉表。执行分位数分析以及其他分

组分析。

groupby分组函数:

返回值:返回重构格式的DataFrame,特别注意,groupby里面的字段内的数据重构后都会变成索引

groupby(),一般和sum()、mean()一起使用,如下例:

先自定义生成数组

import pandas as pd
df = pd.DataFrame({'key1':list('ababa'),
                  'key2': ['one','two','one','two','one'],
                  'data1': np.random.randn(5),
                  'data2': np.random.randn(5)})
print(df)

      data1     data2 key1 key2
0 -1.313101 -0.453361    a  one
1  0.791463  1.096693    b  two
2  0.462611  1.150597    a  one
3 -0.216121  1.381333    b  two
4  0.077367 -0.282876    a  one

应用groupby,分组键均为Series(譬如df[‘xx’]),实际上分组键可以是任何长度适当的数组

#将df['data1']按照分组键为df['key1']进行分组
grouped=df['data1'].groupby(df['key1'])
print(grouped.mean())

key1
a   -0.257707
b    0.287671
Name: data1, dtype: float64

states=np.array(['Ohio','California','California','Ohio','Ohio'])
years=np.array([2005,2005,2006,2005,2006])
#states第一层索引,years第二层分层索引
print(df['data1'].groupby([states,years]).mean())
California  2005    0.791463
            2006    0.462611
Ohio        2005   -0.764611
            2006    0.077367
Name: data1, dtype: float64


#df根据‘key1’分组,然后对df剩余数值型的数据运算
df.groupby('key1').mean()
         data1     data2
key1                    
a    -0.257707  0.138120
b     0.287671  1.239013
#可以看出没有key2列,因为df[‘key2’]不是数值数据,所以被从结果中移除。默认情况下,所有数值列都会被聚合,虽然有时可能被过滤为一个子集。

 对分组进行迭代

#name就是groupby中的key1的值,group就是要输出的内容
for name, group in df.groupby('key1'):
        print (name,group)

a       data1     data2 key1 key2
0 -1.313101 -0.453361    a  one
2  0.462611  1.150597    a  one
4  0.077367 -0.282876    a  one
b       data1     data2 key1 key2
1  0.791463  1.096693    b  two
3 -0.216121  1.381333    b  two

对group by后的内容进行操作,可转换成字典

#转化为字典
piece=dict(list(df.groupby('key1')))

{'a':       data1     data2 key1 key2
 0 -1.313101 -0.453361    a  one
 2  0.462611  1.150597    a  one
 4  0.077367 -0.282876    a  one, 'b':       data1     data2 key1 key2
 1  0.791463  1.096693    b  two
 3 -0.216121  1.381333    b  two}
#对字典取值
value = piece['a']

groupby默认是在axis=0上进行分组的,通过设置也可以在其他任何轴上进行分组

grouped=df.groupby(df.dtypes, axis=1)
value = dict(list(grouped))
print(value)

{dtype('float64'):       data1     data2
0 -1.313101 -0.453361
1  0.791463  1.096693
2  0.462611  1.150597
3 -0.216121  1.381333
4  0.077367 -0.282876, dtype('O'):   key1 key2
0    a  one
1    b  two
2    a  one
3    b  two
4    a  one}

对于大数据,很多情况是只需要对部分列进行聚合

#对df进行'key1','key2'的两次分组,然后取data2的数据,对两次细分的分组数据取均值
value = df.groupby(['key1','key2'])[['data2']].mean()

              data2
key1 key2          
a    one   0.138120
b    two   1.239013
----------------------------------
df
Out[1]: 
      data1     data2 key1 key2
0 -1.313101 -0.453361    a  one
1  0.791463  1.096693    b  two
2  0.462611  1.150597    a  one
3 -0.216121  1.381333    b  two
4  0.077367 -0.282876    a  one
----------------------------------

df['key2'].iloc[-1] ='two'

value = df.groupby(['key1','key2'])[['data2']].mean()

value
Out[2]: 
              data2
key1 key2          
a    one   0.348618
     two  -0.282876
b    two   1.239013

 

 

 

 

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值