来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/count-number-of-nice-subarrays
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题目描述:
给你一个整数数组 nums 和一个整数 k。
如果某个 连续 子数组中恰好有 k 个奇数数字,我们就认为这个子数组是「优美子数组」。
请返回这个数组中「优美子数组」的数目。
示例 1:
输入:nums = [1,1,2,1,1], k = 3
输出:2
解释:包含 3 个奇数的子数组是 [1,1,2,1] 和 [1,2,1,1] 。
暴力搜索法:(超时了)
class Solution {
public int numberOfSubarrays(int[] nums, int k) {
int sum = 0;
int count;
for(int i=0;i<nums.length;i++){
count = 0;
for(int j=i;j<nums.length;j++)
{
if(nums[j]%2==1)count++;
if(count==k)sum++;
}
}
return sum;
}
}
双指针:(时间复杂度O(n))
/*
(双指针)
双指针扫描 r 在前,l 在后。
如果当前位置是奇数,则更新计数器,如果当前 [l, r] 有了恰好 k 个奇数,则移动 l 直到不满足,期间统计出长度为 tot。
让 ans 累加 tot。
如果当前位置是偶数,则说明贡献的答案和上一次是奇数的时候一样,直接让 ans 累加上一次的 tot。
时间复杂度
每个位置最多遍历两次,故时间复杂度为 O(n)。
空间复杂度
仅需要常数的额外空间。
*/
public int numberOfSubarrays(int[] nums, int k) {
int n = nums.length;
int cnt = 0, tot = 0, ans = 0;
for (int r = 0, l = 0; r < n; r++) {
if (isOdd(nums[r])) {
cnt++;
if (cnt == k) tot = 0;
while (cnt == k) {
tot++;
if (isOdd(nums[l]))
cnt--;
l++;
}
ans += tot;
} else{
ans += tot;
}
}
return ans;
}
private boolean isOdd(int n) {
return n % 2 == 1;
}
前缀和+hashmap
class Solution {
public int numberOfSubarrays(int[] nums, int k) {
// sum是前缀和
int sum=0;
int res=0;
// map的键是前缀和 map的值是前缀和出现的次数
HashMap<Integer,Integer> map=new HashMap<>();
// 前缀和为0 出现的次数是1次
map.put(0,1);
for(int num:nums){
sum+=(num&1);
/*当前前缀和是sum,尝试在map中查找 是否存在键值是sum-k(即前缀和是sum-k) ,若找到,即找到子序列和是k*/
if(map.containsKey(sum-k)){
res+=map.get(sum-k);
}
map.put(sum,map.getOrDefault(sum,0)+1);
}
return res;
}
}