【算法训练记录——Day23】


今日内容:

● 669.修剪二叉搜索树
● 108.将有序数组转换为二叉搜索树
● 538.把二叉搜索树转换为累加树
● 总结篇

669.修剪二叉搜索树

在这里插入图片描述
思路:主要是要理解如何删除,左子树小于val就要看左子树的右子树,这一步可以直接用左子树的右子树替换左子树。
遍历二叉树
1. low > root->val,返回root->right的处理结果
2. high < root->val 返回root->left的处理结果
3. 其他情况正常处理左右子树。

	TreeNode* trimBST(TreeNode* root, int low, int high) {
        if(root == nullptr) return root;
        if(root->val < low) {
            root = trimBST(root->right, low, high);
        } else if(root->val > high) {
            root = trimBST(root->left, low, high);
        } else {
            root->left = trimBST(root->left, low, high);
            root->right = trimBST(root->right, low, high);
        }
        return root;
    }

迭代法暂时留着

108.将有序数组转换为二叉搜索树

在这里插入图片描述
思路:题本身不难,但是我又卡在了边界判断条件上,缝缝补补才出来,讨厌没有边界感的我!!!
其实还是没搞明白递归结束条件,等会看看题解。。。

	TreeNode* recursion(vector<int>& nums, int left, int right) {
        if(left > right)
            return nullptr;
        int index = left + ((right - left) >> 1);
        if(index >= nums.size())
            return nullptr;

        TreeNode* node = new TreeNode(nums[index]);
        node->left = recursion(nums, left, index - 1);
        node->right = recursion(nums, index + 1, right);
        return node;
    } 
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        return recursion(nums, 0, nums.size());
    }

思考一下,修改了点代码
上面方法的代码之所以越界,是因为当left == right == size的时候,但我的假设是左闭右开,所以sortedArrayToBST传入的是size,因此不能让left==size,并且 node->left = recursion(nums, left, index - 1)传入的right也没必要减1,减1是左闭右闭的思路

	TreeNode* recursion(vector<int>& nums, int left, int right) {
        // 左闭右开
        if(left >= right)
            return nullptr;
        int index = left + ((right - left) >> 1);
        // if(index >= nums.size())
        //     return nullptr;

        TreeNode* node = new TreeNode(nums[index]);
        node->left = recursion(nums, left, index);
        node->right = recursion(nums, index + 1, right);
        return node;
    } 
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        return recursion(nums, 0, nums.size());
    }

再来个左闭右闭,相等有意义,并且已访问值不再传入

	TreeNode* recursion(vector<int>& nums, int left, int right) {
        // 左闭右闭
        if(left > right)
            return nullptr;
        int index = left + ((right - left) >> 1);
        // if(index >= nums.size())
        //     return nullptr;

        TreeNode* node = new TreeNode(nums[index]);
        node->left = recursion(nums, left, index - 1);
        node->right = recursion(nums, index + 1, right);
        return node;
    } 
    TreeNode* sortedArrayToBST(vector<int>& nums) {
        return recursion(nums, 0, nums.size() - 1);
    }

好好好,原来刚开始的代码是左闭右闭思路主函数没有减一引起的。

538.把二叉搜索树转换为累加树

在这里插入图片描述
思路:二叉搜索树中序遍历结果为递增(左根右),因此将中序遍历结果加入栈,然后遍历栈,修改元素值即可。
有没有一次遍历就修改的方法呢???想想。。除非倒着来,之前说过倒着来就是回溯,难道把中序遍历结果回溯???不会,看题解
好好好,把中序结果加入栈再出来,那不就是右根左吗。。。

	TreeNode* convertBST(TreeNode* root) {
        if(root == nullptr) return root;
        stack<TreeNode*> st;
        TreeNode* cur = root;
        int sum = 0;
        while(cur != nullptr || !st.empty()) {
            if(cur != nullptr) {
                st.push(cur);
                cur = cur->right;
            } else {
                cur = st.top();
                st.pop();
                sum += cur->val;
                cur->val = sum;
                cur = cur->left;
            }
        }
        return root;
    }

这几种遍历还是没玩明白呀

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值