【论文笔记(0)】A case study of batch and incremental recommender systems in supermarket data under concept

该论文探讨了推荐系统在面临用户偏好变化(概念漂移)和新用户/物品引入(冷启动)时的挑战。传统批量学习方法与流式学习方法进行了比较,后者在适应数据流和减轻冷启动问题上表现更优。实验结果显示,流式推荐系统能更好地应对概念漂移,而神经网络模型在冷启动场景下展现出良好的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Ⅰ 论文信息

论文为 A case study of batch and incremental recommender systems in supermarket data under concept drifts and cold start ,于2021年8月发表在 Expert Systems With Applications 期刊上。

该期刊为JCR二区,近年来影响因子有所提升,处于二区中等位置。

本文的研究内容主要为streaming-based models与recommender systems的结合,使得在提升performance的同时可以减轻concept drift与cold start问题。

Ⅱ 论文框架

This paper is divided as follows. Section 2 describes recommender systems, types of feedback, the problem of concept drift, and the challenge of cold start. Section 3 describes existing works on positive-only recommender systems in both batch and stream learning scenarios. Section 4 details a new dataset we make available regarding supermarket transactions, which exhibits concept drift and cold start characteristics. Section 5 describes the experiments undertaken to perform the proposed analysis of recommender systems. Section 6 analyzes existing works in recommender systems to answer whether streaming recommender systems overcome batch approaches w.r.t. concept drifts and cold start. Finally, Section 7 concludes this paper and describes future works.

1. Introduction

  • CF由于所需信息少(只要past user-item interactions)成为研究主流
    In CF, the only data required is a list of user-item interactions, while in CBF, items’ details are required. Consequently, CF is less restrictive and has been the target of many works over the years.

  • 概念漂移在推荐系统中如何体现
    In recommender systems, concept drift reflects changes in the interactions between customers and items, either because (i) customers’ preferences change, (ii) new items become available for purchase, etc.

  • batch fashion & streaming fashion
    BATCH fashion:
    Recommender systems are traditionally trained in a batch fashion, which means that given a training set composed of interactions between users and items, a static model is learned and deployed ad eternum.
    STREAMING fashion:
    Consequently, it is relevant to tailor recommender systems that can be incremented over time, assuming that the interactions between users and items are made available as a stream of events.

  • The incremental ability of the streaming-based recommender systems allows a better recovery when cold start is present.

2. Recommender systems

2.1 Concept drift

The most efficient way to deal with potentially drifting scenarios is to increment the model as user-item interactions are made available.

2.2 The cold start problem

In recommender systems, the cold start problem includes three cases:
(1) cold start of users (how to recommend items to a user recently entered the system);
(2) cold start of items (how to recommend a new item recently introduced into the system to interested users);
(3) cold start of the system (how to realize accurate recommendation in a new system).

3. Positive-only approaches for recommender systems

【positive-only】The feedback is positive only, for example 0-5.

3.1 Batch approaches

这里主要介绍了传统的MF模型 - SVD,BPRMF。此外还介绍了近期结合神经网络的方法 - GMF,MLP,NeuMF。

3.2 Streaming approaches

在streaming approaches中,我们更新推荐系统in a single pass manner,保持数据的自然到达顺序,这样不仅减少了计算成本,还能进行drift adaptation。

这一小节主要介绍了两种work incrementally的方法:Incremental Stochastic Gradient Descendent (ISGD) (Vinagre et al., 2014) 和 Incremental Bayesian Personalized Ranking for MF (IBPRMF) (Rendle et al., 2012)。

5. Experimental protocol

下图展示了对于batch方法和streaming方法,本文是如何进行数据集的分割和训练的。

四个月的数据集,前两个月用于training,后两个月用于testing,而不论什么阶段,stream protocol都会从输入的数据流中不断学习。
在这里插入图片描述
本文使用了RECALL@N metric来评估获得的推荐的质量。

同时,用了两种方法进行评估:
(1)basic evaluator:用整个test set进行测试,允许recommender systems与hypothesis testing之间的比较。
(2)window-based evaluator:基于window(test set的1%)汇报recall。背后的原理在于允许the assessment of recommender systems over time

6. Experimental results and analysis

  • The discrepancy between streaming algorithms and the corresponding batch counterpart depicts the importance of constantly updating the recommender system as new data becomes available.
  • recommender models based on neural networks exhibit interesting behavior in cold-start scenarios even though they are not continuously updated
    可能是神经网络中学到的higher-order embeddings能够generalize用户的潜在行为,使其性能比传统的MF更好。

Ⅲ 启发

  1. Streaming recommender systems 可以有效地处理 cold start issue.
  2. 可以尝试结合 explicit drift detection on matrix factorization 和 neural models in terms of recommendation techniques.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值