1. 题目
给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转。
注意:
假设我们的环境只能存储得下 32
位的有符号整数,则其数值范围为
[
−
2
31
,
2
31
−
1
]
[−2^{31}, 2^{31} − 1]
[−231,231−1]。请根据这个假设,如果反转后整数溢出那么就返回 0。
2. 相关知识
int
类型的取值范围是 [ − 2 31 , 2 31 − 1 ] [−2^{31}, 2^{31} − 1] [−231,231−1]- long 类型的取值范围是 [ − 2 64 , 2 64 − 1 ] [−2^{64}, 2^{64} − 1] [−264,264−1]
3. 解题思路
-
当我们拿到一个数据,肯定要判断这个数是不是个正整数。
-
其实我们最想要的是无论正负我们都想用同样的方法进行处理,例如,我们希望我们遇到的负数的情况永远都可以有相同的正数的情况,
-123
可以按照123
的处理方式,但是有一个数例外,这个数就是-2147483648
,整个集合内,只有这一个数的处理方式没有相应的正数方式。那么我们就针对他再单独分一类。 -
所以我们把整个处理的方法分成三类:
- 正整数: x ∈ [ 0 , 2147483647 ] x∈[0, 2147483647] x∈[0,2147483647]
- 负整数: x ∈ [ − 2147483647 , 0 ) x∈[-2147483647,0) x∈[−2147483647,0)
-2147483648
那么,对于正整数和负整数的reverse
步骤,我们采取这样的方式:
-
正整数:我们在进行
reverse
的过程中很有可能会出现reverse
的结果大于2147483647
的情况,所以我们要将reverse
的结果暂时存放在一个long
类型的n
里面。我们设定,将输入的数据x
进行拆分,从个位进行拆分,假设x = 1234567
,那么首先x % 10 = 7
,也就是x
的个位,作为n
的第一个数字,然后把x
进行x /10
的操作,这样x
就更新为123456
了;再进行第二次这样操作的时候,现在的x = 123456
,n = 7
,那么当x
中的6
再被分离出来的时候,n
应该变成76
,所以这个过程就使用n*10 + x%10
来进行,也就是文中公式的部分。 -
对于负整数,我们在处理的时候,先把他们变成正整数,因为正整数里面没有
2147483648
,这也是为什么我们把它剔除出去的原因,因为如果我们不单独把它作为一类,在我们转换成正整数的时候就会溢出。剩下的操作与正整数的部分完全一样。 -
对于
-2147483648
这一类,它很显然不能reverse
,因为他reverse
的结果很明显溢出了,所以我们直接在这一类就返回0
就可以了。
对于我没有解释到的 while
后面的 if
部分,在代码中我写了相应的注释。
4. 代码
class Solution {
public int reverse(int x) {
long m = (long)x;
long n = 0;
int temp = 0;
int max = 2147483647;
int min = -2147483648;
if(x>=0&&x<= max){
while(x!=0){
n = n*10 + x % 10;
x = x / 10;
}
if(n <= max){ //判断 reverse 之后的结果是否溢出
temp = (int)n; //如果不溢出就把n的类型转换回来输出
}
else temp = 0; //如果溢出了就返回 0
}
else if(x<0&&x>min){
x = Math.abs(x);
while(x!=0){
n = n*10 + x % 10;
x = x / 10;
}
n = n * (-1); //计算完成后要将 n 转换成负数结果
if(n >= min){ //判断是否溢出
temp = (int)n; //未溢出,就把 n 转成 int 然后输出
}
else temp = 0; //溢出就返回 0
}
else if(x == min){
temp = 0;
}
return temp;
}
}