Python数据分析之:pandas 的索引方式 data.loc[], data[][]

1. data.loc[index,column]

使用.loc[ ]第一个参数是行索引,第二个参数是列索引

import pandas as pd
data = pd.DataFrame([range(1,5),range(6,10),range(11,15)])
print(data)
dt = data.loc[0,1]  //[index,column]
print(dt)

在这里插入图片描述
相当于第0行第1列

当然,还可以有如下操作,全部使用标签来作为行索引和列索引

import pandas as pd
data = pd.DataFrame([range(1,5),range(6,10),range(11,15)],['第一行','第二行','第三行'],['第一列','第二列','第三列','第四列'])
print(data)
dt = data.loc['第一行','第三列']
print(dt)

在这里插入图片描述

也可以有如下情况,使用数字作为行索引,标签作为列索引:

import pandas as pd
data = pd.DataFrame([range(1,5),range(6,10),range(11,15)],[0,1,2],['第一列','第二列','第三列','第四列'])
print(data)
dt = data.loc[0,'第三列']
print(dt)

在这里插入图片描述

2. data[column][index]

这里与上面不同,使用两个方括号的索引方式,列标签的优先级更高一些,是列在前行在后。

import pandas as pd
data = pd.DataFrame([range(1,5),range(6,10),range(11,15)])
print(data,'\n')
print(data[2][0])

在这里插入图片描述
即使是在产生dataframe的时候把行列标签列的毫无歧义,也同样要满足列在前、行在后。

import pandas as pd
data = pd.DataFrame([range(1,5),range(6,10),range(11,15)],[0,1,2],['第一列','第二列','第三列','第四列'])
print(data,'\n')
print(data['第二列'][0])

在这里插入图片描述
切记!!!!任何情况下如果直接使用data[][]的索引方式,第一个代表的都是列标签,如果行标签放在前面一定会出错。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

暖仔会飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值