opencv学习之:边缘检测(高斯滤波、梯度计算、非极大值抑制、双阈值检测)

import cv2
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as c
def cv_show(img):
    cv2.imshow("img",img)
    cv2.waitKey(0)
    
    
def cv_read(img_file,gray=True):
    if gray == True:
        return cv2.imread(img_file,0)
    else:
        return cv2.imread(img_file)

边缘检测步骤及原理

在这里插入图片描述

高斯滤波器

在这里插入图片描述

梯度计算

在这里插入图片描述

非极大值抑制

  • 比较当前 A 点和临近两个点 B,C 沿着梯度方向的值
  • 如果 A 的值是最大值,那么就保留 A 作为边界,再沿着梯度的方向作出垂直方向的线即是边界

方法一

在这里插入图片描述

方法二

  • 简化版本
    在这里插入图片描述

双阈值检测

在这里插入图片描述

'''使用的都是lena的图'''
img = cv2.imread("img.png",cv2.IMREAD_GRAYSCALE)
v1 = cv2.Canny(img,80,150)  ## 上下阈值范围
v2 = cv2.Canny(img,50,100)
res = np.hstack((v1,v2))
cv_show(res)

在这里插入图片描述

img = cv2.imread("img.png",cv2.IMREAD_GRAYSCALE)
v1 = cv2.Canny(img,120,250)  ## 上下阈值范围
v2 = cv2.Canny(img,50,100)
res = np.hstack((v1,v2))
cv_show(res)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

暖仔会飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值