鲁棒优化是指在考虑到模型参数中的不确定性时,找到最佳解决方案的过程。在实际应用中,不确定性可能来源于测量误差、预测误差或其他外部影响。MATLAB可以通过几种方法来实施鲁棒优化,确保解决方案在不确定性参数下依然有效。
鲁棒优化的基本思路
鲁棒优化通常需要定义:
- 不确定参数:明确哪些参数是不确定的,以及它们的变化范围或概率分布。
- 鲁棒目标函数:设定一个目标函数,通常是最小化最坏情况下的损失或成本。
- 鲁棒约束:确保在所有不确定参数的可能值下,解决方案都满足约束条件。
案例分析:鲁棒库存管理优化
假设一个零售商需要决定下个月的库存量,但下个月的需求量不确定。目标是最小化总成本,包括订货成本、持有成本和缺货成本。需求的不确定性表现在需求量可能在一定范围内波动。
步骤 1: 定义参数和变量
x
: 订购的库存量。d
: 需求量,是不确定参数,假设其在90到110之间波动。
步骤 2: 设定目标函数和约束
- 目标是最小化成本:订货成本(固定)+持有成本(如果
x > d
)+缺货成本(如果x < d
)。 - 使用线性成本模型简化问题。
% 成本参数
order_cost = 5; % 每单位订货成本
holding_cost = 2; % 每单位每月持有成本
shortage_cost = 15; % 每单位缺货成本
% 不确定参数范围
d_min = 90;
d_max = 110;
步骤 3: 定义鲁棒目标函数
使用fmincon
进行优化,目标函数应计算在最坏情况(最高成本)下的总成本。
function total_cost = robust_cost(x)
d_worst = (x < d_min) * d_