MATLAB初学者入门(5)—— 鲁棒优化

本文介绍了鲁棒优化的概念及其在MATLAB中的实现,通过实例展示如何处理库存管理、生产线调度和电力市场中的不确定性,通过定义鲁棒目标函数和约束,寻求在最不利条件下仍有效的最优解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        鲁棒优化是指在考虑到模型参数中的不确定性时,找到最佳解决方案的过程。在实际应用中,不确定性可能来源于测量误差、预测误差或其他外部影响。MATLAB可以通过几种方法来实施鲁棒优化,确保解决方案在不确定性参数下依然有效。

鲁棒优化的基本思路

        鲁棒优化通常需要定义:

  1. 不确定参数:明确哪些参数是不确定的,以及它们的变化范围或概率分布。
  2. 鲁棒目标函数:设定一个目标函数,通常是最小化最坏情况下的损失或成本。
  3. 鲁棒约束:确保在所有不确定参数的可能值下,解决方案都满足约束条件。

案例分析:鲁棒库存管理优化

        假设一个零售商需要决定下个月的库存量,但下个月的需求量不确定。目标是最小化总成本,包括订货成本、持有成本和缺货成本。需求的不确定性表现在需求量可能在一定范围内波动。

步骤 1: 定义参数和变量
  • x: 订购的库存量。
  • d: 需求量,是不确定参数,假设其在90到110之间波动。
步骤 2: 设定目标函数和约束
  • 目标是最小化成本:订货成本(固定)+持有成本(如果x > d)+缺货成本(如果x < d)。
  • 使用线性成本模型简化问题。
% 成本参数
order_cost = 5;       % 每单位订货成本
holding_cost = 2;     % 每单位每月持有成本
shortage_cost = 15;   % 每单位缺货成本

% 不确定参数范围
d_min = 90;
d_max = 110;
步骤 3: 定义鲁棒目标函数

        使用fmincon进行优化,目标函数应计算在最坏情况(最高成本)下的总成本。

function total_cost = robust_cost(x)
    d_worst = (x < d_min) * d_
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾贾乾杯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值