Python实战开发及案例分析(10)—— 最小二乘法

        最小二乘法是一种用于拟合数据的线性回归技术,它通过最小化残差平方和来找到最佳拟合线。通常用于估计线性关系,但也可以扩展到多元回归和非线性关系中。Python 提供了多种方式来实现最小二乘法,包括使用 NumPySciPyscikit-learn

案例分析:使用 NumPy 实现最小二乘法

        我们可以使用 NumPy 的线性代数功能 np.linalg.lstsq() 来直接求解线性方程组。这个函数使用最小二乘法求解线性方程 y=β0​+β1​x。

Python 实现:

import numpy as np
import matplotlib.pyplot as plt

# 生成示例数据
np.random.seed(0)
X = 2.5 * np.random.randn(100) + 1.5  # 生成100个随机数作为X
Y = 2 * X + np.random.randn(100) * 0.5 + 0.8  # 生成Y

# 将数据转换为矩阵形式
X_mat = np.vstack([X, np.ones(len(X))]).T

# 使用 NumPy 的 lstsq 求解最小二乘法方程
coefficients, residuals, rank, s = np.linalg.lstsq(X_mat, Y, rcond=None)
slope, intercept = coefficients

# 打印回归系数
print(f"Intercept: {intercept:.3f}")
print(f"Slope: {slope:.3f}")

# 绘制结果
plt.scatter(X, Y, label='Data points')
plt.plot(X, slope * X + intercept, color='red', label='Fitted line')
plt.xlabel("X")
plt.ylabel("Y")
plt.title("Linear Regression using Least Squares")
plt.legend()
plt.show()

案例分析:使用 SciPy 实现最小二乘法

  SciPy 提供了 scipy.optimize.curve_fit 函数来拟合非线性模型。我们可以定义线性模型,然后使用该函数进行拟合。

Python 实现:

from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt

# 生成示例数据
np.random.seed(0)
X = 2.5 * np.random.randn(100) + 1.5
Y = 2 * X + np.random.randn(100) * 0.5 + 0.8

# 定义线性模型
def linear_model(x, a, b):
    return a * x + b

# 使用 curve_fit 进行拟合
params, covariance = curve_fit(linear_model, X, Y)
slope, intercept = params

# 打印回归系数
print(f"Intercept: {intercept:.3f}")
print(f"Slope: {slope:.3f}")

# 绘制结果
plt.scatter(X, Y, label='Data points')
plt.plot(X, slope * X + intercept, color='red', label='Fitted line')
plt.xlabel("X")
plt.ylabel("Y")
plt.title("Linear Regression using SciPy")
plt.legend()
plt.show()

案例分析:使用 scikit-learn 实现最小二乘法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾贾乾杯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值