程序员的成长之路
互联网/程序员/技术/资料共享
阅读本文大概需要 2.8 分钟。
来自:juejin.cn/post/7208559891605438521
大家平时刷抖音、视频号、快手时,几乎总能刷到最新的视频。那这里是怎么实现的呢?
上述场景,可以简单抽象为曝光去重,就是用户看过的 feeds1、feeds2、feeds3 ...... 等,如何保证在用户下次进入系统时不会再次出现呢?今天,我们就来探讨下几种实现方案吧。
1方案一 :Set
这个方案简单粗暴,就是每个用户用一个集合,存储看过的所有 feedsid。每次推荐系统要出新的 feeds 时,去 set 中 check 一下是否存在,如果存在的话,就过滤掉这条 feeds。
一般来说,像是短视频推荐的场景下,对 feeds 的实时性要求相对较高,一般会使用 Redis 作为曝光打击的载体。
不了解 Redis Set 的同学可以参考下:https://redis.io/commands/set/
这种方案的问题是,在海量用户的场景下,一是成本会很高(像 Redis 是纯内存数据库);二是随着 feeds 数量越来越多,set 查询会随之变慢(像短视频的场景下,1晚上刷个上百条还是不成问题的)。
我们来简单试算一下,假设国民级 App 的日活跃用户在 3kw,每人每天平均刷 200 条视频 feeds,每条 feeds 的 id 长度为 32B。
如果以 Redis Set 的方案来计算:3kw * 200 * 32 * 1.5(Redis 数据结构自身存储) ~ 288G,每天需要消耗存储 288G,1个月呢?8.6T,1年呢?103T。以腾讯云 keewiDB 的持久内存来估计 64元/GB/月,1月成本大约 55w,有钱也不能这么造啊。
那有没有更优惠的实现方案呢?这就要说到本文的主角,布隆过滤器了。
2方案二:Bloom Filter
布隆过滤器,本质上是一个高阶 Bitmap,最适合的场景就是海量数据的过滤了。
不了解 Bitmap 的同学可以参考 www.cnblogs.com/dragonsuc/p…[1]
布隆过滤器介绍
布隆过滤器的结构如下图示:
简单说下它的使用:
写入:对数据 data 进行 k 次 hash 运算(hash 函数可选择,本文不具体较少),得到结果后,对 bit 数组相应位置置1。
检查:对数据 data 同样进行 k 次 hash 运算,得到结果后,检测 bloom bit 数组中相应位置是否全为1,如全是1,则表示该 data 存在于 bloom 中;否则,表示该数据不在 bloom 中。
结合上述描述,我们可以得出如下结论:
bloom 中存的摘要,而不是原始数据 data,所以空间占用远远低于 set 的占用。
bloom 无法删除数据,如上图示 x、y 都对 bit 数组中 bits[2] 置1了,如果删除 x,则 bits[2]为0,y判定时,也判定失败了。
bloom 无法动态扩展大小,如上图示,bit 数组是固定的,如果 bits 数组长度调整了,那么同样的 x、y hash 后的 bits 索引也会发生变化。
bloom 存在误判的可能,例如 x、y hash 后得到的 bits 数组索引都是 1、3、5,那么即使 bloom 中只添加了 x,当 y 来判定时,也会判定为存在。
这里不细究它的推导过程了,感兴趣的同学可以自行研究。
布隆过滤器实现曝光打击
由上述布隆过滤器的特性所知:必须合理选择 bloom 过滤器的规格,bloom bit 数组太小,则误判率过高;bloom bit 数组太大,则过于浪费存储。
还是以相同的条件来试算,
假设国民级 App 的日活跃用户在 3kw,每人每天平均刷 200 条视频 feeds,每条 feeds 的 id 长度为 32B。
如果以 Redis bloom 的方案来计算:400B * 3kw ~ 12G,相比 set 方案的 288G,节约了 96% 的存储成本。1月可以节约 52.8w 成本,降本增效杠杠的。
当设置 bloom 容量为 200 时,每人每天1个key,可以保证当天看到不重复的 feeds,BF 规格如下:
采用 Redis Bloom 插件计算,redis.io/docs/stack/…[2]
<END>
推荐阅读:
互联网初中高级大厂面试题(9个G)
内容包含Java基础、JavaWeb、MySQL性能优化、JVM、锁、百万并发、消息队列、高性能缓存、反射、Spring全家桶原理、微服务、Zookeeper......等技术栈!
⬇戳阅读原文领取! 朕已阅