2015 ICPC亚洲区域赛 长春站

寒假开始的第一场训练赛,一共过掉了4题。
L - House Building
思路:这是一道以minecraft为背景的题,问不同形状立方体裸露的表面积是多少,显然将每一个单元格的高度与四周单位的高度的差之和再加上顶上1个单位的表面积及即为这个单元格裸露的表面积,每个单元格裸露表面积的和即为答案。tips:注意将数组清0,因为没清0WA了一次555

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std;
int t, n, m;
int c[60][60];
int main(){
	ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
	cin >> t;
	while(t--){
		memset(c, 0, sizeof(c));
		int ans = 0;
		cin >> n >> m;
		for(int i = 1; i <= n; i++){
			for(int j = 1; j <= m; j++){
				cin >> c[i][j];
			}
		}
		for(int i = 1; i <= n; i++){
			for(int j = 1; j <= m; j++){
				if(c[i][j] == 0) continue;
				if(c[i - 1][j] < c[i][j]) ans += (c[i][j] - c[i - 1][j]);
				if(c[i + 1][j] < c[i][j]) ans += (c[i][j] - c[i + 1][j]);
				if(c[i][j - 1] < c[i][j]) ans += (c[i][j] - c[i][j - 1]);
				if(c[i][j + 1] < c[i][j]) ans += (c[i][j] - c[i][j + 1]);
				ans += 1;
			}
		}
		
		cout << ans << endl;
	}
	return 0;
}

G - Dancing Stars on Me
思路:显然,正多边形的每条边相等并且都是点与点间最小的距离。所以枚举每两个点的距离,如果是正多边形的话,最小的n-1条边一定是相等的。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>

using namespace std;
vector <double> v;
double x[110], y[110];
int t, n;
int main(){
	scanf("%d", &t);
	while(t--){
		v.clear();
		scanf("%d", &n);
		for(int i = 1; i <= n; i++){
			scanf("%lf%lf", &x[i], &y[i]);
		}
		for(int i = 1; i <= n - 1; i++){
			for(int j = i + 1; j <= n; j++){
				v.push_back((x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]));
			}
		}
		sort(v.begin(), v.end());
		if(v[0] == v[n - 1]) puts("YES");
		else puts("NO");
	}
	return 0;
} 

思路2:比赛时队友的思路,因为每个点都是整数,所以当且仅当为四边形(正方形)时为正多边形。
队友代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;

int t,n,l;
int xt,yt,x[10],y[10];
bool p[10][10],f;
double k[15];

int main()
{
	scanf("%d",&t);
	while(t--)
	{
		f=true;
		scanf("%d",&n);	
		if(n!=4)
		{
			for(int i=1;i<=n;i++)
			{
				scanf("%d%d",&xt,&yt);
			}
			printf("NO\n");
		}
		else 
		{
			l=0;
			f=false;
			for(int i=1;i<=4;i++)
			{
				scanf("%d%d",&x[i],&y[i]);
			}
			for(int i=1;i<=4;i++)
			{
				for(int j=1;j<=4;j++)
				{
					p[i][j]=false;
				}
			}
			for(int i=1;i<=4;i++)
			{
				for(int j=1;j<=4;j++)
				{
					if(i!=j && !p[i][j] && !p[j][i])
					{
						k[++l]=sqrt((x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]));
						p[i][j]=true;
						p[j][i]=true;
					}
				}
			}
			sort(k+1,k+l+1);
			for(int i=2;i<=4;i++)
			{
				if(k[i]!=k[i-1]) f=true;
			}
			if(k[5]!=k[6]) f=true;
			if(!f) printf("YES\n");
			else printf("NO\n");
		}
	}
	return 0;
}

F - Almost Sorted Array
思路:暴力模拟,从小到大最只允许出现一次数值的波动(非递增),判断一下与前后的关系,从大到小同理。tips:注意边界的设置!!!在这里WA了两次

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>

using namespace std;
int a[100010]; 
int t, n;
int main(){
	scanf("%d", &t);
	while(t--){
		scanf("%d", &n);
		for(int i = 1; i <= n; i++){
			scanf("%d", &a[i]);
		}
		int cnt = 0; 
		bool flag1 = 1, flag2 = 1;
		a[n + 1] = 1e9 + 10;
		a[0] = 0;
		for(int i = 2; i <= n; i++){
			if(a[i] < a[i - 1] && cnt == 0){
				cnt = 1;
				if(a[i] >= a[i - 2] || a[i + 1] >= a[i - 1]){
					continue;
				}
				else{
					flag1 = 0;
					break;
				}
			}
			else if(a[i] < a[i - 1] && cnt == 1){
				flag1 = 0;
				break;
			}
		}
		if(flag1 == 1) puts("YES");
		else{
			cnt = 0;
			a[n + 1] = 0;
			a[0] = 1e9 + 10;
			for(int i = 2; i <= n; i++){
			if(a[i] > a[i - 1] && cnt == 0){
				cnt = 1;
				if(a[i] <= a[i - 2] || a[i + 1] <= a[i - 1]){
					continue;
				}
				else{
					flag2 = 0;
					break;
				}
			}
			else if(a[i] > a[i - 1] && cnt == 1){
				flag2 = 0;
				break;
				}
			}
			if(flag2 == 1) puts("YES");
			else puts("NO");
		}
	}
	return 0;
} 

J - Chip Factory
思路:暴力,给了9s的时间……非正解,正解是字典树(以后一定补上)

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>

using namespace std;
int a[1010];
int main(){
    int t;
    scanf("%d",&t);
    while(t--){
        int n,i,j;
        scanf("%d", &n);
        for(i = 1; i <= n; i++){
            scanf("%d", &a[i]);
        }
        int maxn = 0, temp;
        for(int i = 1; i <= n; i++){
            for(int j = i + 1; j <= n; j++){
                for(int k = j + 1; k <= n; k++){
                    temp = max((a[i] + a[j]) ^ a[k], (a[i] + a[k]) ^ a[j]);
                    temp = max(temp, (a[j] + a[k]) ^ a[i]);
                    maxn = max(maxn,  temp);
                }
            }
        }
        printf("%d\n", maxn);
    }
    return 0;
}
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值