tcl电视解除第三方限制终极方法 实测有效

TCL电视安装软件方法

这个方法应该是迄今为止最牛的、最好用的方法,没有之一!tcl电视解除第三方限制终极方法 实测有效

前言:

TCL电视限制了第三方软件的安装,都无法通过蚂蚁市场等应用市场来下载安装应用。接下来分享的,是通过adb工具打开TCL电视第三方应用安装的权限。

下面的教程其实也是我学来的,我也只是一个小白,经过我折腾终于摸清楚了方法。

所以我会尽量把每个步骤拆分讲解,让就算小白用户看着操作也能搞定。

第一步:在电脑安装好adb工具

(1)下载adb工具
  先下载ADB工具:
  链接: https://pan.baidu.com/s/1naVbRZN50YvFIaqwqRT8KA 提取码: yw9b。
  下载ADB工具Platform Tools完成之后,进行解压(建议放在D盘)。
adb工具下载
(2)设置环境变量
  打开“我的电脑->属性->系统高级设置->环境变量”,找到Path,选择编辑,在变量值后面加入platform-tools文件夹的路径:D:\platform-tools\platform-tools
设置环境变量
  注意2个细节:文件路径前面有一个标点符号【;】其次platform-tools文件夹的路径根据你们自己的实际路径填写,我上面的是放在了D盘。

(3)运行ADB检查是否安装成功
  快捷键WIN开始+R,在运行窗口输入CMD,打开命令行窗口,输入adb,能打印出adb的版本号和用法,即为安装成功。
cmd运行
adb工具安装

第二步:打开电视的adb调试开关

进入设置 > 系统 > 系统信息,遥控器依次按下“上”、“下”、“左”、“右”,即可看到页面中跳出adb开关,将ADB设为开启状态.

TCL电视adb开启方法

第三步:使用adb工具打开电视软件安装权限

(1)首先将电脑和电视连接到同一网络下。查看TCL电视的ip地址,我的这台电视的ip为192.168.8.164。

TCL电视IP地址
  (2)然后按快捷键WIN开始+R,在运行窗口输入CDM,打开命令行窗口。
CMD

(3)根据上面获得的ip地址192.168.8.164,在CMD命令行输入 adb connect 192.168.8.164:5555 连接到TCL电视。(注意,这里的IP地址到时候改成你自己电视的IP地址)

cmd命令
  (4)在上一步连接电视的时候,电视这边会有这个“允许USB调试吗”的提示,一定记得勾选一律允许。
在这里插入图片描述
  (5)成功连接电视之后,输入 adb shell 进入shell模式。
adb shell模式

(6)然后分别输入以下两条命令,就可以成功打开第三方应用安装权限。

setprop persist.tcl.debug.installapk 1

setprop persist.tcl.installapk.enable 1

执行完成之后,输入exit退出。
打开TCL电视第三方软件安装权限

完成以上操作,说明你已经成功打开了TCL电视第三方应用安装权限!

第四步:大功告成

我们来测试一下

蚂蚁市场
软件安装
  可以看到,可以随意从蚂蚁市场里下载软件,和安装软件,超级方便。分享码的也可以正常下载安装。

这个方法真是一劳永逸,太畅快了!

无束缚、更畅快!

有问题欢迎留言,后面补充点常见问题!记住一个关键点,一定要多次重复尝试。一定要多次重复尝试。一定要多次重复尝试。我也是小白,跟着做就会了。

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,含不同骑行姿态样本 - Truck(卡车):包含中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包含归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包含车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包含城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
评论 47
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值