AI Talk | 如何评估AI是否可信?

本文探讨了可信AI的重要性,源于人工智能引发的信任危机,如算法安全、不透明和歧视问题。可信AI的发展受到学术界、政府和企业的关注,涉及可靠可控、透明可释、数据保护、明确责任和多元包容等多个方面。文章介绍了评估AI可信度的三个阶段:可用、可靠和可信,并阐述了每个阶段的关注点和评估方法。最后,分享了在实际操作中如何进行可信AI的评估与实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:leonlzhou

随着AI技术深入到各行各业,AI也不断暴露出一些风险隐患,包括人脸数据的滥用,算法歧视,算法鲁棒性等,AI所隐藏的风险也越来越被大众所重视。虽然AI确实给各行各业提供了新的加速器,但是却也在慢慢丢失大众对它的信任。基于此,可信赖人工智能被越来越多的提及,越来越多的政府和企业都加入到了可信AI的发展和共建队伍中来。可信AI已经成为全球共识,也是行业发展的必然趋势。那什么是可信AI?如何确保和评估AI是可信的呢?

▲为什么需要可信AI?

人工智能技术引发了信任危机,主要有以下几个场景:算法安全性,算法不透明,算法歧视,算法的事故责任,算法的隐私风险。AI在这几个场景的离奇表现引发的大众对其的质疑。

  • 算法安全

uber自动驾驶未识别路上行人,最终导致行人死亡

3D面具和合成照片实施欺骗,破解人脸识别系统

  • 算法不透明

美国德州某学校,教学系统采用AI判断老师教学水平,因为算法的不可解释性引发了老师的强烈抗议

  • 算法歧视

美国芝加哥法院犯罪风险评估系统对黑人存在歧视

  • 算法责任

自动驾驶在出现事故后的责任划分?

AI的伦理问题?

  • 隐私风险

ZAO违规收集人脸数据

上面这些事件也只是大众对AI产生信任危机的一小部分,单拎出来一类都有很多AI有类似的风险。比如算法歧视问题,还存在于搜索推荐,智能招聘,金融借贷等场景。这些事件的发生让我们重新来审视AI,AI向善的本质还是人的向善,创造AI的开发者需要去审视自己。

▲可信AI的发展

可信AI在学术界,政府和企业都有很多发展和推动。

其中学术界有专门针对可信AI相关的技术社区,包括Acm Facct,Fair & Responsible AI CHI2020,RAI ICLR等。Acm Facct重点focus在Fairness, Accountability, 和 Transparency上。而在政府层面,最近几年欧盟也颁布了多项AI法案,在模型安全和可解释性上做了明确的要求。而在国内,深圳也发布了<<深圳经济特区人工智能产业促进条例>>,在AI可靠性,伦理安全等也做了明确的政策要求。

除了政策要求,各个标准组

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值