洛谷P5662 纪念品(csp-j2019)

博客详细介绍了洛谷P5662题目的解题思路,指出该问题是一个完全背包问题。作者提到在比赛中虽然想出了解决策略,即允许当天购买并卖出纪念品,但未能在比赛中实现。文章接着说明如何通过维护f[i][j]的状态来求解,表示拥有i个物品且成本为j时的最大收益。
摘要由CSDN通过智能技术生成

Link


这题是个完全背包。。。然后思路什么的比赛的时候想出来了但是却没敲出来。
首先,我们可以当天买,当天卖,所以可以第一天买了一个纪念品,第二天卖了再买,第三天再卖。
所以我们只需处理每一天,完全背包,设f[i][j]为i个物品,成本为j时可以赚到的钱。

f[i][j]=max{f[i-1][j],f[i][j-a[i-1][j]]-a[i-1][j]+a[i][j]}  //不选,或(再)选一个

code:

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int t,m,n,a[101][101],f[101
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值