完全背包变式 纪念品(洛谷 P5662)

纪念品

题目描述

小伟突然获得一种超能力,他知道未来 T 天 N 种纪念品每天的价格。某个纪念品的价格是指购买一个该纪念品所需的金币数量,以及卖出一个该纪念品换回的金币数量。

每天,小伟可以进行以下两种交易无限次:

任选一个纪念品,若手上有足够金币,以当日价格购买该纪念品;
卖出持有的任意一个纪念品,以当日价格换回金币。
每天卖出纪念品换回的金币可以立即用于购买纪念品,当日购买的纪念品也可以当日卖出换回金币。当然,一直持有纪念品也是可以的。

T 天之后,小伟的超能力消失。因此他一定会在第 T 天卖出所有纪念品换回金币。

小伟现在有 M 枚金币,他想要在超能力消失后拥有尽可能多的金币。

输入格式
第一行包含三个正整数 T, N, M,相邻两数之间以一个空格分开,分别代表未来天数 T,纪念品数量 N,小伟现在拥有的金币数量 M。

接下来 T 行,每行包含 N 个正整数,相邻两数之间以一个空格分隔。第 i 行的 N 个正整数分别为 Pi,1,Pi,2,……,Pi,N,其中 Pi,j表示第 i 天第 j 种纪念品的价格。

输出格式

输出仅一行,包含一个正整数,表示小伟在超能力消失后最多能拥有的金币数量。


这道题在基础的完全背包上加了一维;

相当于求每一天的完全背包,体积为当天物品价格,价值为当天物品价格和明天物品价格的差值,这个是最难想的,非常重要;

这道题非常好,对完全背包的利用达到极致;

代码:

#include<bits/stdc++.h>
#define LL long long
#define pa pair<int,int>
#define lson k<<1
#define rson k<<1|1
using namespace std;
const int N=10100;
const int M=200100;
const LL mod=2e9+7;
int w[110][110],dp[N],ans;
int main(){
	int t,n,m;
	scanf("%d%d%d",&t,&n,&m);
	for(int i=1;i<=t;i++){
		for(int j=1;j<=n;j++) scanf("%d",&w[i][j]);
	}
	for(int i=1;i<t;i++){
		memset(dp,0,sizeof(dp));
		for(int j=1;j<=n;j++){
			for(int k=w[i][j];k<=m;k++){
				dp[k]=max(dp[k],dp[k-w[i][j]]+w[i+1][j]-w[i][j]);
			}
		}
		m=max(m,dp[m]+m);
	}
	printf("%d\n",m);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值