纪念品
题目描述
小伟突然获得一种超能力,他知道未来 T 天 N 种纪念品每天的价格。某个纪念品的价格是指购买一个该纪念品所需的金币数量,以及卖出一个该纪念品换回的金币数量。
每天,小伟可以进行以下两种交易无限次:
任选一个纪念品,若手上有足够金币,以当日价格购买该纪念品;
卖出持有的任意一个纪念品,以当日价格换回金币。
每天卖出纪念品换回的金币可以立即用于购买纪念品,当日购买的纪念品也可以当日卖出换回金币。当然,一直持有纪念品也是可以的。
T 天之后,小伟的超能力消失。因此他一定会在第 T 天卖出所有纪念品换回金币。
小伟现在有 M 枚金币,他想要在超能力消失后拥有尽可能多的金币。
输入格式
第一行包含三个正整数 T, N, M,相邻两数之间以一个空格分开,分别代表未来天数 T,纪念品数量 N,小伟现在拥有的金币数量 M。
接下来 T 行,每行包含 N 个正整数,相邻两数之间以一个空格分隔。第 i 行的 N 个正整数分别为 Pi,1,Pi,2,……,Pi,N,其中 Pi,j表示第 i 天第 j 种纪念品的价格。
输出格式
输出仅一行,包含一个正整数,表示小伟在超能力消失后最多能拥有的金币数量。
这道题在基础的完全背包上加了一维;
相当于求每一天的完全背包,体积为当天物品价格,价值为当天物品价格和明天物品价格的差值,这个是最难想的,非常重要;
这道题非常好,对完全背包的利用达到极致;
代码:
#include<bits/stdc++.h>
#define LL long long
#define pa pair<int,int>
#define lson k<<1
#define rson k<<1|1
using namespace std;
const int N=10100;
const int M=200100;
const LL mod=2e9+7;
int w[110][110],dp[N],ans;
int main(){
int t,n,m;
scanf("%d%d%d",&t,&n,&m);
for(int i=1;i<=t;i++){
for(int j=1;j<=n;j++) scanf("%d",&w[i][j]);
}
for(int i=1;i<t;i++){
memset(dp,0,sizeof(dp));
for(int j=1;j<=n;j++){
for(int k=w[i][j];k<=m;k++){
dp[k]=max(dp[k],dp[k-w[i][j]]+w[i+1][j]-w[i][j]);
}
}
m=max(m,dp[m]+m);
}
printf("%d\n",m);
return 0;
}