【最短路】【枚举】最短路(path)

该博客探讨了一种解决有向图中通过指定标记点的最短路径问题的方法。通过构建新图并使用DFS枚举路径顺序,计算从起点到终点的最短距离。当存在解决方案时输出最短距离,否则输出-1。
摘要由CSDN通过智能技术生成

题目描述

给定一个n个点m条边的有向图,有k个标记点,要求从规定的起点按任意顺序经过所有标记点到达规定的终点,问最短的距离是多少。

输入

第一行5个整数n、m、k、s、t,表示点个数、边条数、标记点个数、起点编号、终点编号。
接下来m行每行3个整数x、y、z,表示有一条从x到y的长为z的有向边。
接下来k行每行一个整数表示标记点编号。

输出

输出一个整数,表示最短距离,若没有方案可行输出-1。

输入样例
3 3 2 1 1
1 2 1
2 3 1
3 1 1
2
3
输出样例
3

思路

建一个新图,包括所有必须走的点。点与点之间的距离为原图中的最短路。
然后dfs枚举这些必须去的点去的顺序。(因为点数很小)累计一下距离即可。


代码

#include<cstdio>
#include<cstring> 
#include<queue>
#include<iostream>
using namespace std;
long long l[60001],bjd[20],n,m,k,s,t,T,x,y,z,lk;
long long ans = 10000000000,S[20][50001];
bool B[60001];
struct asdf{
   
	long long to,next,zz;
} a[2000001];
void spfa(long long startbh, long long startd){
   
	long 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值