Description
一个无向图上,没有自环,所有边的权值均为1,对于一个点对(a,b),我们要把所有a与b之间所有最短路上的点的总个数输出。
Input
第一行n,m,表示n个点,m条边
接下来m行,每行两个数a,b,表示a,b之间有条边
在下来一个数p,表示问题的个数
接下来p行,每行两个数a,b,表示询问a,b
Output
对于每个询问,输出一个数c,表示a,b之间最短路上点的总个数
Sample Input
5 6
1 2
1 3
2 3
2 4
3 5
4 5
3
2 5
5 1
2 4
Sample Output
4
3
2
思路
Floyed求一遍,得出最短路。
然后对于每一个a,b,要求他们之间最短路上点的总个数,就枚举一个点k,判断点k是否在最短路上。
即a到k的路程+k到b的路程==a到b的路程
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int n,m,a[101][101],ans[101][101],p,x,y;
int main()
{
memset(a,127/3,sizeof(a));
scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i){
scanf("%d%d",&x,&y);
a[x][y]=1;a[y][x]=1; //权值为1
}
for(int i=1;i<=n;++i) //初始化一下
a[i][i]=0;
for(int k=1;k<=n;k++) //Floyed
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
a[i][j]=min(a[i][j],a[i][k]+a[k][j]);
scanf("%d",&p);
for(int i=1;i<=p;++i){
scanf("%d%d",&x,&y);
if(ans[x][y]==0){
for(int k=1;k<=n;++k) //枚举点k
if(a[x][k]+a[k][y]==a[x][y]) ans[x][y]++; //如果点k在最短路上,ans++
ans[y][x]=ans[x][y];
}
printf("%d\n",ans[x][y]); //输出
}
}