机器学习-cs229-逻辑回归


**注:本篇文章参考了许多博文,因为机器学习尤其是CS229系列的课程和博文详细的好的非常多,本片由很多参考。


逻辑回归

公式:
在这里插入图片描述

用g(x)表示z
在这里插入图片描述

物理意义:对于输入x,输出为y=1的可能性

在这里插入图片描述

从函数的值的角度:
在这里插入图片描述

注:这里阈值可以调

逻辑回归重新定义代价函数

线性回归的代价函数为 :

img

代入到平方代价函数的时候 ,我们得到的代价函数将是一个非凸函数 (non-convexfunction) :
img

这将严重影响梯度下降算法寻找全局最小值

所以考虑到 Sigmoid 函数的形式 , 我们放弃使用平方代价函数 , 使用这种代价函数 :

img


为什么不用平方损失函数?

也可以用平方损失,但是会在h(wx)接近0和1的地方梯度很小,不容易学习,你可以试着用平方损失进行梯度下降,就会发现了,tips:会用到dh/dw=h*(1-h)。



用极大似然估计的方法

img

原因:极大似然估计在原有的概率函数上以log为底,1.不改变概率函数的分布 2.增函数,求到之后取y=0的x值,得到最大值



img

对于y=1时,即cost=-log(hx), 若hx也=1,则代价函数=0;反之无穷大

img

对于 -log(1= h(x)) 也是同理 :

img




总结一下

损失函数:

这里说一下,函数的形态仍为凹函数

img

求当代价函数最小时的θ

img


算法:对Jθ求导,

在这里插入图片描述

与线性回归的式子作比较:
在这里插å¥å›¾ç‰‡æè¿°

好像长一样耶

但是这里的 : 与线性回归中不同,所以实际上是不一样的 .

逻辑回归中:
在这里插入图片描述

线性回归中:

在这里插å¥å›¾ç‰‡æè¿°



推荐博文

知乎专栏:逻辑回归

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值