**注:本篇文章参考了许多博文,因为机器学习尤其是CS229系列的课程和博文详细的好的非常多,本片由很多参考。
逻辑回归
公式:
用g(x)表示z
物理意义:对于输入x,输出为y=1的可能性
从函数的值的角度:
在这里插入图片描述
注:这里阈值可以调
逻辑回归重新定义代价函数
线性回归的代价函数为 :
代入到平方代价函数的时候 ,我们得到的代价函数将是一个非凸函数 (non-convexfunction) :
这将严重影响梯度下降算法寻找全局最小值
所以考虑到 Sigmoid 函数的形式 , 我们放弃使用平方代价函数 , 使用这种代价函数 :
为什么不用平方损失函数?
也可以用平方损失,但是会在h(wx)接近0和1的地方梯度很小,不容易学习,你可以试着用平方损失进行梯度下降,就会发现了,tips:会用到dh/dw=h*(1-h)。
用极大似然估计的方法
原因:极大似然估计在原有的概率函数上以log为底,1.不改变概率函数的分布 2.增函数,求到之后取y=0的x值,得到最大值
对于y=1时,即cost=-log(hx), 若hx也=1,则代价函数=0;反之无穷大
对于 -log(1= h(x)) 也是同理 :
总结一下
损失函数:
这里说一下,函数的形态仍为凹函数
求当代价函数最小时的θ
算法:对Jθ求导,
与线性回归的式子作比较:
好像长一样耶
但是这里的 : 与线性回归中不同,所以实际上是不一样的 .
逻辑回归中:
线性回归中: