代码随想录训练营 Day36打卡 动态规划 part04 1049. 最后一块石头的重量II 494. 目标和 474. 一和零

代码随想录训练营 Day36打卡 动态规划 part04

一、力扣1049. 最后一块石头的重量II

有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x 和 y,且 x <= y。那么粉碎的可能结果如下:
    如果 x == y,那么两块石头都会被完全粉碎;
    如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x。
最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0。
示例:
输入:stones = [2,7,4,1,8,1]
输出:1
解释
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

dp[j]表示容量(这里说容量更形象,其实就是重量)为j的背包,最多可以背最大重量为dp[j]。

因为提示中给出1 <= stones.length <= 30,1 <= stones[i] <= 1000,所以最大重量就是30 * 1000 。

而我们要求的target其实只是最大重量的一半,所以dp数组开到15000大小就可以了。

01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);

本题则是:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);

举例,输入:[2,4,1,1],此时target = (2 + 4 + 1 + 1)/2 = 4 ,dp数组状态图如下:
在这里插入图片描述
最后dp[target]里是容量为target的背包所能背的最大重量。

那么分成两堆石头,一堆石头的总重量是dp[target],另一堆就是sum - dp[target]。

在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的。

那么相撞之后剩下的最小石头重量就是 (sum - dp[target]) - dp[target]。

代码实现

class Solution:
    def lastStoneWeightII(self, stones: List[int]) -> int:
        # 初始化 dp 数组,大小为 15001,用于存储在每个容量下可以达到的最大重量
        dp = [0] * 15001
        # 计算所有石头的总重量
        total_sum = sum(stones)
        # 目标是找到接近总重量一半的最大重量
        target = total_sum // 2

        # 遍历每块石头
        for stone in stones:
            # 01背包问题,从后向前遍历背包容量,保证每块石头只被使用一次
            for j in range(target, stone - 1, -1):
                # 状态转移方程:选择当前石头或不选择当前石头
                dp[j] = max(dp[j], dp[j - stone] + stone)

        # 返回最终结果:总重量减去两倍的最接近总重量一半的重量
        return total_sum - dp[target] - dp[target]

力扣题目链接
题目文章讲解
题目视频讲解

二、力扣494. 目标和

给你一个非负整数数组 nums 和一个整数 target 。
向数组中的每个整数前添加 ‘+’ 或 ‘-’ ,然后串联起所有整数,可以构造一个 表达式
例如,nums = [2, 1] ,可以在 2 之前添加 ‘+’ ,在 1 之前添加 ‘-’ ,然后串联起来得到表达式 “+2-1” 。
返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。
示例:
输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

本题要如何使表达式结果为target,

既然为target,那么就一定有 left组合 - right组合 = target。

left + right = sum,而sum是固定的。right = sum - left

公式来了, left - (sum - left) = target 推导出 left = (target + sum)/2 。

target是固定的,sum是固定的,left就可以求出来。

此时问题就是在集合nums中找出和为left的组合。

dp[j] 表示:填满j(包括j)这么大容积的包,有dp[j]种方法

只要搞到nums[i],凑成dp[j]就有dp[j - nums[i]] 种方法。

例如:dp[j],j 为5,

已经有一个1(nums[i]) 的话,有 dp[4]种方法 凑成 容量为5的背包。
已经有一个2(nums[i]) 的话,有 dp[3]种方法 凑成 容量为5的背包。
已经有一个3(nums[i]) 的话,有 dp[2]种方法 凑成 容量为5的背包
已经有一个4(nums[i]) 的话,有 dp[1]种方法 凑成 容量为5的背包
已经有一个5 (nums[i])的话,有 dp[0]种方法 凑成 容量为5的背包
那么凑整dp[5]有多少方法呢,也就是把 所有的 dp[j - nums[i]] 累加起来。

所以求组合类问题的公式,都是类似这种:

dp[j] += dp[j - nums[i]]

输入:nums: [1, 1, 1, 1, 1], target: 3

bagSize = (target + sum) / 2 = (3 + 5) / 2 = 4

dp数组状态变化如下:
在这里插入图片描述
我们的目标是通过选择子集来实现和为 bagSize。dp[j] 表示达到和为 j 的不同子集数目。以下是动态规划的过程:

第一个元素 nums[0] = 1:
从右往左更新 dp 数组,以避免重复使用同一元素。
初始状态: dp = [1, 0, 0, 0, 0]
处理 dp[j] 从 j = 4 到 j = 1:
dp[4] = dp[4] + dp[3] => dp[4] = 0 + 0 = 0
dp[3] = dp[3] + dp[2] => dp[3] = 0 + 0 = 0
dp[2] = dp[2] + dp[1] => dp[2] = 0 + 0 = 0
dp[1] = dp[1] + dp[0] => dp[1] = 0 + 1 = 1
更新后的 dp 数组为: [1, 1, 0, 0, 0]

第二个元素 nums[1] = 1:
处理 dp[j] 从 j = 4 到 j = 1:
dp[4] = dp[4] + dp[3] => dp[4] = 0 + 0 = 0
dp[3] = dp[3] + dp[2] => dp[3] = 0 + 0 = 0
dp[2] = dp[2] + dp[1] => dp[2] = 0 + 1 = 1
dp[1] = dp[1] + dp[0] => dp[1] = 1 + 1 = 2
更新后的 dp 数组为: [1, 2, 1, 0, 0]

第三个元素 nums[2] = 1:
处理 dp[j] 从 j = 4 到 j = 1:
dp[4] = dp[4] + dp[3] => dp[4] = 0 + 0 = 0
dp[3] = dp[3] + dp[2] => dp[3] = 0 + 1 = 1
dp[2] = dp[2] + dp[1] => dp[2] = 1 + 2 = 3
dp[1] = dp[1] + dp[0] => dp[1] = 2 + 1 = 3
更新后的 dp 数组为: [1, 3, 3, 1, 0]

第四个元素 nums[3] = 1:
处理 dp[j] 从 j = 4 到 j = 1:
dp[4] = dp[4] + dp[3] => dp[4] = 0 + 1 = 1
dp[3] = dp[3] + dp[2] => dp[3] = 1 + 3 = 4
dp[2] = dp[2] + dp[1] => dp[2] = 3 + 3 = 6
dp[1] = dp[1] + dp[0] => dp[1] = 3 + 1 = 4
更新后的 dp 数组为: [1, 4, 6, 4, 1]

第五个元素 nums[4] = 1:
处理 dp[j] 从 j = 4 到 j = 1:
dp[4] = dp[4] + dp[3] => dp[4] = 1 + 4 = 5
dp[3] = dp[3] + dp[2] => dp[3] = 4 + 6 = 10
dp[2] = dp[2] + dp[1] => dp[2] = 6 + 4 = 10
dp[1] = dp[1] + dp[0] => dp[1] = 4 + 1 = 5
更新后的 dp 数组为: [1, 5, 10, 10, 5]

最终结果:
dp[bagSize] = dp[4] = 5,表示有 5 种方法可以通过给 nums 数组中的元素加上 + 或 - 来使得总和为目标值 S = 3。

代码实现

class Solution:
    def findTargetSumWays(self, nums: List[int], target: int) -> int:
        # 首先计算数组 nums 的总和 total_sum
        total_sum = sum(nums)
        
        # 如果 target 的绝对值大于 total_sum,那么无法达到目标值,返回 0
        if abs(target) > total_sum:
            return 0
        
        # 如果 target + total_sum 是奇数,也无法通过任何组合得到目标值,因为 left = (target + sum) / 2 必须为整数
        if (target + total_sum) % 2 == 1:
            return 0
        
        # 计算 target_sum,即我们需要在 nums 中找到的组合和
        target_sum = (target + total_sum) // 2
        
        # 创建一个大小为 target_sum + 1 的动态规划数组 dp,初始化为 0
        # dp[j] 表示填满容量为 j 的包的方案数
        dp = [0] * (target_sum + 1)
        
        # 初始化 dp[0] 为 1,因为当目标和为 0 时,只有一种方案,即不选择任何元素
        dp[0] = 1
        
        # 遍历 nums 中的每一个数字 num
        for num in nums:
            # 从后向前遍历 dp 数组,避免重复计算
            # 因为对于一个新的 num,我们要考虑它对所有可能的 dp[j] 的影响
            for j in range(target_sum, num - 1, -1):
                # 状态转移方程:dp[j] 表示容量为 j 的包的方案数
                # dp[j] += dp[j - num] 意味着我们可以通过将 num 加入到容量为 j-num 的方案中,得到一个新的容量为 j 的方案
                dp[j] += dp[j - num]
        
        # 返回 dp[target_sum],即凑成目标和的所有方案数
        return dp[target_sum]

力扣题目链接
题目文章讲解
题目视频讲解

三、力扣474. 一和零

给你一个二进制字符串数组 strs 和两个整数 m 和 n 。
请你找出并返回 strs 的最大子集的长度,该子集中 最多 有 m 个 0 和 n 个 1 。
如果 x 的所有元素也是 y 的元素,集合 x 是集合 y 的 子集
示例
输入:strs = [“10”, “0001”, “111001”, “1”, “0”], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {“10”,“0001”,“1”,“0”} ,因此答案是 4 。
其他满足题意但较小的子集包括 {“0001”,“1”} 和 {“10”,“1”,“0”} 。{“111001”} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

本题中strs 数组里的元素就是物品,每个物品都是一个!
而m 和 n相当于是一个背包,两个维度的背包。 这个背包有两个维度,一个是m 一个是n,而不同长度的字符串就是不同大小的待装物品。

dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。

dp[i][j] 就可以是 dp [ i - zeroNum ][ j - oneNum ] + 1

然后我们在遍历的过程中,取dp[i][j]的最大值。

所以递推公式:dp[i][j] = max( dp [ i ][ j ] , dp [ i - zeroNum ] [ j - oneNum ] + 1);

以输入:[“10”,“0001”,“111001”,“1”,“0”],m = 3,n = 3为例

最后dp数组的状态如下所示:
在这里插入图片描述

代码实现

class Solution:
    def findMaxForm(self, strs: List[str], m: int, n: int) -> int:
        # 创建一个大小为 (m + 1) x (n + 1) 的二维动态规划数组,初始化为0
        # dp[i][j] 表示最多有 i 个 0 和 j 个 1 的最大子集长度
        dp = [[0] * (n + 1) for _ in range(m + 1)]
        
        # 遍历每一个字符串,视为一个物品
        for s in strs:
            # 统计当前字符串中 '0' 和 '1' 的数量
            zeroNum = s.count('0')  # 计算字符串中 '0' 的个数
            oneNum = len(s) - zeroNum  # 计算字符串中 '1' 的个数
            
            # 从背包容量的最大值开始遍历,确保每个物品只计算一次
            # 遍历背包的容量 i 表示最多能容纳 i 个 0
            for i in range(m, zeroNum - 1, -1):
                # 遍历背包的容量 j 表示最多能容纳 j 个 1
                for j in range(n, oneNum - 1, -1):
                    # 状态转移方程:
                    # 当前 dp[i][j] 可以通过 dp[i-zeroNum][j-oneNum] + 1 得到
                    # 表示使用当前物品 s 后的最大子集长度
                    dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1)
        
        # dp[m][n] 表示最多有 m 个 0 和 n 个 1 的最大子集长度
        return dp[m][n]

力扣题目链接
题目文章讲解
题目视频讲解

  • 10
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值