特征降维 --- 主成分分析

1、定义
主成分分析
2、API
API
ex_1

from sklearn.decomposition import PCA
def pca_demo():
    '''
    pca降维

    '''
    data = [[2,3,4,5],[6,3,0,8],[5,4,9,1]]
    #实例化一个转换器类
    # 4列,4个特征,降为两个特征
    transfer = PCA(n_components=2) #或者传入0.95,即保留95%的特征

    data_new = transfer.fit_transform(data)

    print("data_new: \n", data_new)

    return None
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值