周赛336(哈希、贪心、前缀异或和+哈希)

文章提供了几个编程题目,涉及字符串是否以元音开始和结束的判断,数组的重排以获取最大前缀分数,以及寻找美丽的子数组。解决方案包括使用哈希表、贪心算法和前缀和技巧来解决问题。
摘要由CSDN通过智能技术生成

6315. 统计范围内的元音字符串数

难度简单0

给你一个下标从 0 开始的字符串数组 words 和两个整数:leftright

如果字符串以元音字母开头并以元音字母结尾,那么该字符串就是一个 元音字符串 ,其中元音字母是 'a''e''i''o''u'

返回 words[i] 是元音字符串的数目,其中 i 在闭区间 [left, right] 内。

示例 1:

输入:words = ["are","amy","u"], left = 0, right = 2
输出:2
解释:
- "are" 是一个元音字符串,因为它以 'a' 开头并以 'e' 结尾。
- "amy" 不是元音字符串,因为它没有以元音字母结尾。
- "u" 是一个元音字符串,因为它以 'u' 开头并以 'u' 结尾。
在上述范围中的元音字符串数目为 2 。

示例 2:

输入:words = ["hey","aeo","mu","ooo","artro"], left = 1, right = 4
输出:3
解释:
- "aeo" 是一个元音字符串,因为它以 'a' 开头并以 'o' 结尾。
- "mu" 不是元音字符串,因为它没有以元音字母开头。
- "ooo" 是一个元音字符串,因为它以 'o' 开头并以 'o' 结尾。
- "artro" 是一个元音字符串,因为它以 'a' 开头并以 'o' 结尾。
在上述范围中的元音字符串数目为 3 。

提示:

  • 1 <= words.length <= 1000
  • 1 <= words[i].length <= 10
  • words[i] 仅由小写英文字母组成
  • 0 <= left <= right < words.length

哈希

class Solution {
    public int vowelStrings(String[] words, int left, int right) {
        Set<Character> set = new HashSet<>();
        set.add('a'); set.add('e'); set.add('i'); set.add('o'); set.add('u');
        int res = 0;
        for(int i = left; i <= right && i < words.length; i++){
            String word = words[i];
            if(set.contains(word.charAt(0)) && set.contains(word.charAt(word.length()-1))){
                res++;
            }
        }
        return res;
    }
}

6316. 重排数组以得到最大前缀分数

难度中等4

给你一个下标从 0 开始的整数数组 nums 。你可以将 nums 中的元素按 任意顺序 重排(包括给定顺序)。

prefix 为一个数组,它包含了 nums 重新排列后的前缀和。换句话说,prefix[i]nums 重新排列后下标从 0i 的元素之和。nums分数prefix 数组中正整数的个数。

返回可以得到的最大分数。

示例 1:

输入:nums = [2,-1,0,1,-3,3,-3]
输出:6
解释:数组重排为 nums = [2,3,1,-1,-3,0,-3] 。
prefix = [2,5,6,5,2,2,-1] ,分数为 6 。
可以证明 6 是能够得到的最大分数。

示例 2:

输入:nums = [-2,-3,0]
输出:0
解释:不管怎么重排数组得到的分数都是 0 。

提示:

  • 1 <= nums.length <= 105
  • -106 <= nums[i] <= 106

贪心

class Solution {
    public int maxScore(int[] nums) {
        int res = 0; // 正整数的个数
        double sum = 0;
        Arrays.sort(nums);
        for(int i = nums.length-1; i >= 0; i--){
            sum += nums[i];
            if(sum > 0) res++;
        }
        return res;
    }
}

6317. 统计美丽子数组数目

难度中等16

给你一个下标从 0 开始的整数数组nums 。每次操作中,你可以:

  • 选择两个满足 0 <= i, j < nums.length 的不同下标 ij
  • 选择一个非负整数 k ,满足 nums[i]nums[j] 在二进制下的第 k 位(下标编号从 0 开始)是 1
  • nums[i]nums[j] 都减去 2k

如果一个子数组内执行上述操作若干次后,该子数组可以变成一个全为 0 的数组,那么我们称它是一个 美丽 的子数组。

请你返回数组 nums美丽子数组 的数目。

子数组是一个数组中一段连续 非空 的元素序列。

示例 1:

输入:nums = [4,3,1,2,4]
输出:2
解释:nums 中有 2 个美丽子数组:[4,3,1,2,4] 和 [4,3,1,2,4] 。
- 按照下述步骤,我们可以将子数组 [3,1,2] 中所有元素变成 0 :
  - 选择 [3, 1, 2] 和 k = 1 。将 2 个数字都减去 21 ,子数组变成 [1, 1, 0] 。
  - 选择 [1, 1, 0] 和 k = 0 。将 2 个数字都减去 20 ,子数组变成 [0, 0, 0] 。
- 按照下述步骤,我们可以将子数组 [4,3,1,2,4] 中所有元素变成 0 :
  - 选择 [4, 3, 1, 2, 4] 和 k = 2 。将 2 个数字都减去 22 ,子数组变成 [0, 3, 1, 2, 0] 。
  - 选择 [0, 3, 1, 2, 0] 和 k = 0 。将 2 个数字都减去 20 ,子数组变成 [0, 2, 0, 2, 0] 。
  - 选择 [0, 2, 0, 2, 0] 和 k = 1 。将 2 个数字都减去 21 ,子数组变成 [0, 0, 0, 0, 0] 。

示例 2:

输入:nums = [1,10,4]
输出:0
解释:nums 中没有任何美丽子数组。

提示:

  • 1 <= nums.length <= 105
  • 0 <= nums[i] <= 106

前缀和+哈希表

class Solution {
    // 减去2^k 相当于把位上的1变成0
    // 每次修改同一个比特位的1 ==> 异或操作
    // 求 异或和=0 的子数组个数
    // 两个前缀和的异或 ==> 两个前缀和是相等的
    // 前缀和数组中所有相同的数对
    public long beautifulSubarrays(int[] nums) {
        long res = 0;
        int n = nums.length;
        int[] s = new int[n+1];
        for(int i = 0; i < n; i++){
            s[i+1] = s[i] ^ nums[i];
        }
        // 记录左边前缀和出现次数
        Map<Integer, Integer> cnt = new HashMap<>();
        for(int x : s){
            // 先计入答案再统计个数,如果反过来的话,就相当于把空子数组也计入答案了
            res += cnt.getOrDefault(x, 0);
            cnt.merge(x, 1, Integer:: sum);
            // 上面merge写法等于:cnt.put(x, cnt.getOrDefault(x, 0) + 1);
        }
        return res;
    }
}

一边计算前缀和s,一边计算答案

class Solution {
    // 减去2^k 相当于把位上的1变成0
    // 每次修改同一个比特位的1 ==> 异或操作
    // 求 异或和=0 的子数组个数
    // 两个前缀和的异或 ==> 两个前缀和是相等的
    // 前缀和数组中所有相同的数对
    public long beautifulSubarrays(int[] nums) {
        long res = 0;
        int n = nums.length;
        int s = 0;
        // 记录左边前缀和出现次数
        Map<Integer, Integer> cnt = new HashMap<>();
        cnt.put(s, 1); // s[0]
        for(int x : nums){
            s = s ^ x;
            res += cnt.getOrDefault(s, 0);
            //cnt.merge(x, 1, Integer:: sum);
            cnt.put(s, cnt.getOrDefault(x, 0) + 1);
        }
        return res;
    }
}

6318. 完成所有任务的最少时间

难度困难18

你有一台电脑,它可以 同时 运行无数个任务。给你一个二维整数数组 tasks ,其中 tasks[i] = [starti, endi, durationi] 表示第 i 个任务需要在 闭区间 时间段 [starti, endi] 内运行 durationi 个整数时间点(但不需要连续)。

当电脑需要运行任务时,你可以打开电脑,如果空闲时,你可以将电脑关闭。

请你返回完成所有任务的情况下,电脑最少需要运行多少秒。

示例 1:

输入:tasks = [[2,3,1],[4,5,1],[1,5,2]]
输出:2
解释:
- 第一个任务在闭区间 [2, 2] 运行。
- 第二个任务在闭区间 [5, 5] 运行。
- 第三个任务在闭区间 [2, 2] 和 [5, 5] 运行。
电脑总共运行 2 个整数时间点。

示例 2:

输入:tasks = [[1,3,2],[2,5,3],[5,6,2]]
输出:4
解释:
- 第一个任务在闭区间 [2, 3] 运行
- 第二个任务在闭区间 [2, 3] 和 [5, 5] 运行。
- 第三个任务在闭区间 [5, 6] 运行。
电脑总共运行 4 个整数时间点。

提示:

  • 1 <= tasks.length <= 2000
  • tasks[i].length == 3
  • 1 <= starti, endi <= 2000
  • 1 <= durationi <= endi - starti + 1

贪心

class Solution {
    public int findMinimumTime(int[][] tasks) {
        // 根据区间右端点排序,这样能充分利用区间
        Arrays.sort(tasks, (a, b) -> a[1] - b[1]);
        int res = 0;
        // run表示当前正在运行中的时刻(区间)
        boolean[] run = new boolean[tasks[tasks.length-1][1] + 1];
        for(int[] t : tasks){
            int start = t[0], end = t[1], d = t[2];
            for(int i = start; i <= end; i++){
                if(run[i]) --d; // 去掉运行中的时间点
            }
            for(int i = end; d > 0; --i){ // 剩余的 d 填充区间后缀
                if(!run[i]){
                    run[i] = true;
                    --d;
                    ++res;
                }
            }
        }
        return res;
    }
}

线段树优化(…)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值