1375. 二进制字符串前缀一致的次数
难度中等60
给你一个长度为 n
、下标从 1 开始的二进制字符串,所有位最开始都是 0
。我们会按步翻转该二进制字符串的所有位(即,将 0
变为 1
)。
给你一个下标从 1 开始的整数数组 flips
,其中 flips[i]
表示对应下标 i
的位将会在第 i
步翻转。
二进制字符串 前缀一致 需满足:在第 i
步之后,在 闭 区间 [1, i]
内的所有位都是 1 ,而其他位都是 0 。
返回二进制字符串在翻转过程中 前缀一致 的次数。
示例 1:
输入:flips = [3,2,4,1,5]
输出:2
解释:二进制字符串最开始是 "00000" 。
执行第 1 步:字符串变为 "00100" ,不属于前缀一致的情况。
执行第 2 步:字符串变为 "01100" ,不属于前缀一致的情况。
执行第 3 步:字符串变为 "01110" ,不属于前缀一致的情况。
执行第 4 步:字符串变为 "11110" ,属于前缀一致的情况。
执行第 5 步:字符串变为 "11111" ,属于前缀一致的情况。
在翻转过程中,前缀一致的次数为 2 ,所以返回 2 。
示例 2:
输入:flips = [4,1,2,3]
输出:1
解释:二进制字符串最开始是 "0000" 。
执行第 1 步:字符串变为 "0001" ,不属于前缀一致的情况。
执行第 2 步:字符串变为 "1001" ,不属于前缀一致的情况。
执行第 3 步:字符串变为 "1101" ,不属于前缀一致的情况。
执行第 4 步:字符串变为 "1111" ,属于前缀一致的情况。
在翻转过程中,前缀一致的次数为 1 ,所以返回 1 。
提示:
n == flips.length
1 <= n <= 5 * 104
flips
是范围[1, n]
中所有整数构成的一个排列
问题转换
方法一:
class Solution {
// 如果满足闭区间[1-i]全是1,那么 flips[1:i+1]的和 肯定等于 [1~i]的元素和
public int numTimesAllBlue(int[] flips) {
int n = flips.length;
int[] sort_filps = new int[n];
for(int i = 0; i < n; i++) sort_filps[i] = i+1;
int ans = 0;
int sumf = 0, sumsf = 0;
for(int i = 0; i < n; i++){
sumf += flips[i];
sumsf += sort_filps[i];
if(sumf == sumsf) ans += 1;
}
return ans;
}
}
方法二:
class Solution {
// //当前最大值和下标相等时说明前缀一致
public int numTimesAllBlue(int[] flips) {
int max = -1;
int ans = 0;
for(int i = 0; i < flips.length; i++){
max = Math.max(max, flips[i]);
if(max == (i+1)) ans += 1;
}
return ans;
}
}