LC-1254. 统计封闭岛屿的数目(DFS)

1254. 统计封闭岛屿的数目

难度中等202

二维矩阵 grid0 (土地)和 1 (水)组成。岛是由最大的4个方向连通的 0 组成的群,封闭岛是一个 完全 由1包围(左、上、右、下)的岛。

请返回 封闭岛屿 的数目。

示例 1:

img

输入:grid = [[1,1,1,1,1,1,1,0],[1,0,0,0,0,1,1,0],[1,0,1,0,1,1,1,0],[1,0,0,0,0,1,0,1],[1,1,1,1,1,1,1,0]]
输出:2
解释:
灰色区域的岛屿是封闭岛屿,因为这座岛屿完全被水域包围(即被 1 区域包围)。

示例 2:

img

输入:grid = [[0,0,1,0,0],[0,1,0,1,0],[0,1,1,1,0]]
输出:1

示例 3:

输入:grid = [[1,1,1,1,1,1,1],
             [1,0,0,0,0,0,1],
             [1,0,1,1,1,0,1],
             [1,0,1,0,1,0,1],
             [1,0,1,1,1,0,1],
             [1,0,0,0,0,0,1],
             [1,1,1,1,1,1,1]]
输出:2

提示:

  • 1 <= grid.length, grid[0].length <= 100
  • 0 <= grid[i][j] <=1

DFS(岛屿问题变形)

class Solution {
    // 本题与岛屿数量的区别在于 **边界上的岛屿不算岛屿**,因为题目要求统计封闭岛屿的数目
    int[][] dirts = {{-1, 0}, {1, 0}, {0, 1}, {0, -1}};
    int[][] grid;
    int m, n;
    public int closedIsland(int[][] grid) {
        this.grid = grid;
        m = grid.length; n = grid[0].length;
        int ans = 0;
        for(int i = 1; i < m-1; i++){
            for(int j = 1; j < n-1; j++){
                if(grid[i][j] == 0){
                    if(dfs(i, j)) ans += 1;
                }
            }
        }
        return ans;
    }   

    public boolean dfs(int i, int j){
        if(i < 0 || j < 0 || i >= m || j >= n)
            return false;
        if(grid[i][j] == 0){
            grid[i][j] = -1;
            boolean flag = true;
            for(int[] d : dirts){
                int x = i + d[0], y = j + d[1];
                // 即使遇到了边界,也要继续把相邻的标记
                flag = flag & dfs(x, y);
            }
            return flag;
        }
        return true;
    }
}
        }
        return flag;
    }
    return true;
}

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值