MTI
MTI理论和从不同角度上的理解一、MTI处理
- MTI处理是对慢时间维进行一个线性滤波处理,其处理的方式类似于通过一个高通滤波器。大大改善了SCR(信杂比);
- 对于每一个脉冲,其回波信号的杂波分量相同,运动目标的相位会随目标改变,对连续脉冲波对的回波进行相减,就可以完全对消杂波分量,而目标信号因为其相位改变所以其不会被完全对消掉。
- 杂波频谱一般集中于DC=0(f=0)和雷达PRF的整数倍位置。在连续被雷达中,杂波一般集中在零频带附近,所以MTI滤波器在直流和PRF的整数倍处有很深的阻带
二、MTI滤波器设计
1.二脉冲MTI对消器(单阶对消)
延迟T为等于雷达的PRI(PRT的倒数)。输入信号的表达式为:
y
(
t
)
=
x
(
t
)
−
x
(
t
−
T
)
y(t)= x(t)- x(t-T)
y(t)=x(t)−x(t−T)
脉冲响应为:
h
(
t
)
=
d
e
l
t
a
(
t
)
−
d
e
l
t
a
(
t
−
T
)
h(t)= delta (t)- delta (t-T)
h(t)=delta(t)−delta(t−T)
FT变换:
H
(
w
)
=
1
−
e
(
−
j
w
T
)
H(w)=1-e^(-jwT)
H(w)=1−e(−jwT)
Z域:
H
(
z
)
=
1
−
z
(
−
1
)
H(z)=1-z^(-1)
H(z)=1−z(−1)
画出频率响应曲线:
根据频率特性曲线验证了上述第三点说法。其滤波器呈现周期性变化,但是可以发现其阻带槽口很窄,滤波性能不好,此时双延迟对消器就有很好的性能改变。
代码如下:
// fofr1为期望的周其数目
function [resp] = single_canceler (fofr1)
% single delay canceller
eps = 0.00001;
fofr = 0:0.01:fofr1;
arg1 = pi .* fofr;
resp = 4.0 .*((sin(arg1)).^2);
max1 = max(resp);
resp = resp ./ max1;
subplot(2,1,1)
plot(fofr,resp,'k')
xlabel ('Normalized frequency in f/fr')
ylabel( 'Amplitude response in Volts')
grid
subplot(2,1,2)
resp=10.*log10(resp+eps);
plot(fofr,resp,'k');
axis tight
grid
xlabel ('Normalized frequency in f/fr')
ylabel( 'Amplitude response in dB')
end
2.三脉冲(双延迟)或多阶对消器
输入信号的表达式为:
y
(
t
)
=
x
(
t
)
−
2
x
(
t
−
T
)
+
x
(
t
−
2
T
)
y(t)= x(t)- 2x(t-T)+x(t-2T)
y(t)=x(t)−2x(t−T)+x(t−2T)
脉冲响应为:
h
(
t
)
=
d
e
l
t
a
(
t
)
−
2
d
e
l
t
a
(
t
−
T
)
+
d
e
l
t
a
(
t
−
2
T
)
h(t)= delta (t)- 2delta (t-T)+delta (t-2T)
h(t)=delta(t)−2delta(t−T)+delta(t−2T)
FT变换:
H
(
w
)
=
[
1
−
e
−
j
w
T
]
2
H(w)=[1-e^-jwT]^2
H(w)=[1−e−jwT]2
Z域:
H
(
z
)
=
[
1
−
z
−
1
]
2
=
1
−
2
z
−
1
+
z
−
2
H(z)=[1-z^-1]^2=1-2z^-1+z^-2
H(z)=[1−z−1]2=1−2z−1+z−2
画出频率响应曲线:
通过对比,双对消具有更好的响应曲线,我们可以试想三延迟的曲线,我在这里不在具体写出。当然除了更高阶的MTI滤波器,还有带反馈回路的滤波器(递归滤波器)具有更好的响应曲线。