矩阵快速幂

矩阵快速幂入门
递推式

下面的代码是对该递推式的矩阵构造
矩阵的构造

其中在1到k处的值应该为2的(k-1)次幂。
如果k>=n的时候结果直接为2的(n-1)次幂,如果k<n那么结果为构造的k*k的矩阵的(n-k)次幂。
代码如下:


#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int mod=7777777;
int k,n;
struct node{
    ll a[12][12];
    node(){
        memset(a,0,sizeof(a));
    }
    node operator*(const node x)const{
        node ans;
        for(int i=1;i<=k;++i){
            for(int j=1;j<=k;++j){
                for(int p=1;p<=k;++p){
                    ans.a[i][j]+=a[i][p]*x.a[p][j];
                    ans.a[i][j]%=mod;
                }
            }
        }
        return ans;
    }
};
ll pow_(int b){
    node st,mul;
    for(int i=1;i<=k;++i){
        st.a[1][i]=pow(2,k-i);
        mul.a[i][1]=1;
        mul.a[i][i+1]=1;
    }
    while(b){
        if(b&1){
            st=st*mul;
        }
        mul=mul*mul;
        b>>=1;
    }
    return st.a[1][1];
}
int main()
{
    while(~scanf("%d %d",&k,&n)){
        if(k>=n){
            printf("%d\n",(int)pow(2,n-1));
            continue;
        }
        printf("%lld\n",pow_(n-k));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值