大模型的训练和微调
大模型的训练分两个阶段:预训练(Pretrained)和微调(Fine tuning)。因此大模型训练和微调不完全是一个意思,训练包含了微调。
- 模型预训练:通过在大量无标注数据上进行训练,从而学习到语言的一般规律和知识,会得到预训练模型。
- 模型微调:利用这个预训练模型进行定制,使其适应特定的任务需求。这个过程叫做“微调”(Fine-tuning),即在预训练模型的基础上,使用少量有标注的数据对模型进行进一步训练,使其在特定任务上取得更好的效果和性能。
模型微调和LoRA训练
- 模型微调是一种优化技术,用于调整和改进机器学习模型的性能。在模型微调中,我们通过调整模型的参数、结构或权重分布来优化模型的性能和泛化能力。这个过程可以帮助我们发现并解决模型中可能存在的问题,从而提高模型的准确性和效率。可以把模型微调看作是对模型进行“精细调整”,使其更适应特定的数据集或任务。
- LoRA训练是一种特殊的模型训练方法,它全称为“Low-Rank Adaptation”。这种方法的关键在于,它允许我们仅通过训练一小部分参数(而不是整个模型)来实现模型的个性化或适应新的任务。这种方法减少了计算和存储成本,同时提高了训练效率。在LoRA训练中,模型的原始权重保持不变,只是增加了一些新的、低秩的参数来适应新的任务或数据。
传统的微调方法通常调整整个模型的参数,而LoRA则通过引入低秩矩阵来微调模型的部分参数,实现更高效和节约资源的适应。因此,也可以将LoRA视为一种特殊的模型微调方案,它针对特定任务或数据集,通过低秩适应技术来优化模型性能。
数据标注
- 无标注数据(Unlabeled data):这类数据是指未经人工标注或分类的数据,如大量的文本、图像或音频等。无标注数据在训练机器学习模型时起到重要作用,因为它们可以帮助模型学习到数据的通用特征和规律。然而,由于无标注数据没有明确的标签,所以模型在利用这些数据进行训练时,需要依靠自监督学习等方法来推断数据的潜在结构。
- 有标注数据(Labeled data):这类数据是指已经由人类或其他算法标注或分类的数据。有标注数据通常用于训练和验证机器学习模型的性能。由于有标注数据具有明确的标签,模型可以利用这些数据进行监督学习,从而更好地学习到分类或回归任务中的映射关系。
例如,在图像分类任务中,有标注数据可能是一组图片,其中每张图片都带有一个或多个标签,如“猫”、“狗”、“汽车”等。这些标签告诉算法图片中所包含的内容,从而帮助模型学会如何区分和分类不同的图像。通过这些有标注数据,模型能够逐渐学会根据图像的特征