VLLM多卡并行优化策略

一、多卡并行方式

多卡并行方式,分为张量并行(Tensor Parallelism)和数据并行(Data Parallelism)。

  • 张量并行是将模型的不同层分布到不同GPU上。
  • 而数据并行是每个GPU处理不同的输入数据。

VLLM多卡并行主要依赖 张量并行(Tensor Parallelism) 实现模型分布式推理。因此我们采用这种方案。

二、关键配置参数与策略

参数作用说明推荐值
CUDA_VISIBLE_DEVICES为当前进程划定可使用的GPU范围0,1,2,3 根据GPU显卡数量设定
–tensor-parallel-size指定GPU并行数量(需与CUDA_VISIBLE_DEVICES数量一致)2/4/8(根据模型规模调整)
–gpu-memory-utilization显存利用率阈值(0.9~0.95为高负载场景推荐)0.7~0.95
–max-model-len最大输入长度(需根据GPU显存动态调整)4096~16384

示例:

CUDA_VISIBLE_DEVICES=0,1,2,3 \  
vllm serve /path/to/model \  
--tensor-parallel-size 4 \  
--gpu-memory-utilization 0.9  

三、 高级优化策略(可选)

(1)通信优化

NCCL配置:
  • 确保NCCL版本≥2.14(支持自动拓扑检测)
  • 设置环境变量提升带宽:
export NCCL_ALGO=Tree  
export NCCL_SOCKET_IFNAME=eth0  # 指定高速网络接口  
硬件拓扑适配:
  • 优先使用NVLink互联的GPU组(通过nvidia-smi topo -m查看连接方式)
  • 避免跨PCIe Switch的GPU分配(延迟增加30%+)

(2)显存管理

  • 大模型低显存 启用–swap-space 16G(利用主机内存扩展交换空间)
  • 长序列推理 降低–gpu-memory-utilization至0.7~0.8,避免OOM
  • 动态批处理 默认启用(无需配置),通过–max-num-seqs 256控制并发量
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值