图像处理和计算机视觉是人工智能领域中的热门方向,Python 凭借其简洁的语法和丰富的第三方库,成为进行图像处理的绝佳工具。而 OpenCV 是一个开源的计算机视觉库,提供了大量的函数与算法来处理图像和视频数据。在本文中,我们将使用 Python 和 OpenCV 来探索图像处理的核心技能,帮助你快速掌握计算机视觉的基础与实战技巧。
一、OpenCV 简介
OpenCV(Open Source Computer Vision Library)是一个强大的计算机视觉库,支持多种语言,如 C++、Python 和 Java 等。它包含了几百个图像处理和计算机视觉的函数,能够处理从简单的图像读取与显示,到复杂的机器学习、物体检测等任务。
二、安装 OpenCV
在开始之前,首先确保你的环境中已经安装了 OpenCV。你可以使用以下命令来安装 OpenCV 的 Python 版本:
pip install opencv-python
如果需要处理视频等其他功能,还可以安装扩展库:
pip install opencv-python-headless opencv-contrib-python
安装完成后,我们就可以开始图像处理实战了。
三、读取与显示图像
第一步是读取和显示图像,这样我们才能对图像进行各种处理。OpenCV 提供了 imread()
函数来读取图像,imshow()
函数来显示图像。让我们通过代码来演示:
import cv2
# 读取图像
img = cv2.imread('image.jpg')
# 显示图像
cv2.imshow('Image', img)
# 按任意键关闭窗口
cv2.waitKey(0)
cv2.destroyAllWindows()
在这段代码中,imread()
函数用于读取指定路径的图像文件,而 imshow()
则用于显示该图像。waitKey(0)
让窗口保持打开状态,直到用户按键关闭。
四、图像基本操作
在计算机视觉领域中,图像处理的基础操作包括缩放、裁剪、旋转和调整颜色等。下面我们将逐步演示这些操作。
1. 图像缩放
使用 resize()
函数可以轻松缩放图像。以下代码将图像缩小到原尺寸的 50%:
# 缩放图像
resized_img = cv2.resize(img, (0, 0), fx=0.5, fy=0.5)
# 显示缩放后的图像
cv2.imshow('Resized Image', resized_img)
cv2.waitKey(0)
cv2.destroyAllWindows()