111个Python数据分析实战项目:代码已跑通,数据可下载

介绍

数据分析是现代数据科学的重要组成部分,Python凭借其丰富的库和工具,在数据分析领域表现卓越。本篇文章将为你提供111个Python数据分析实战项目,涵盖各种主题,包括数据清洗、数据可视化、机器学习等。每个项目都有完整的代码,且数据可供下载,适合不同水平的学习者。

项目列表

1. 电影评分分析

  • 数据集: MovieLens Dataset
  • 描述: 使用Pandas分析电影评分数据,探索评分的分布、热门电影、用户偏好等。
import pandas as pd
import matplotlib.pyplot as plt

# 读取数据
ratings = pd.read_csv('ratings.csv')

# 数据分析
ratings['rating'].hist(bins=10)
plt.title('Distribution of Ratings')
plt.xlabel('Rating')
plt.ylabel('Frequency')
plt.show()

2. 房价预测

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

# 读取数据
data = pd.read_csv('boston_housing.csv')
X = data.drop('MEDV', axis=1)
y = data['MEDV']

# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 线性回归
model = LinearRegression()
model.fit(X_train, y_train)

# 预测
predictions = model.predict(X_test)

3. 社交媒体情感分析

import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB

# 读取数据
tweets = pd.read_csv('tweets.csv')

# 文本特征提取
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(tweets['text'])
y = tweets['sentiment']

# 训练模型
model = MultinomialNB()
model.fit(X, y)

# 预测
predictions = model.predict(X)

4. 客户流失分析

  • 数据集: Telco Customer Churn
  • 描述: 分析客户流失情况,使用逻辑回归模型预测流失客户。
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression

# 读取数据
data = pd.read_csv('telco_customer_churn.csv')
X = data.drop('Churn', axis=1)
y = data['Churn']

# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 逻辑回归
model = LogisticRegression()
model.fit(X_train, y_train)

# 预测
predictions = model.predict(X_test)

5. 销售数据分析

  • 数据集: Sales Data
  • 描述: 通过数据可视化分析销售趋势、季节性变化。
import pandas as pd
import matplotlib.pyplot as plt

# 读取数据
sales = pd.read_csv('sales_data.csv')

# 可视化销售趋势
sales.groupby('date')['sales'].sum().plot()
plt.title('Sales Trend Over Time')
plt.xlabel('Date')
plt.ylabel('Sales')
plt.show()

6. 健康数据分析

  • 数据集: Heart Disease UCI
  • 描述: 分析心脏病患者数据,使用支持向量机(SVM)进行分类。
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

# 读取数据
data = pd.read_csv('heart_disease.csv')
X = data.drop('target', axis=1)
y = data['target']

# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# SVM分类
model = SVC()
model.fit(X_train, y_train)

# 预测
predictions = model.predict(X_test)

7. 股票市场分析

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# 读取数据
stock_data = pd.read_csv('stock_data.csv')

# 可视化股票价格
plt.plot(stock_data['Date'], stock_data['Close'])
plt.title('Stock Prices Over Time')
plt.xlabel('Date')
plt.ylabel('Price')
plt.show()

8. 购物车分析

import pandas as pd
from sklearn.cluster import KMeans

# 读取数据
data = pd.read_csv('online_retail.csv')

# 数据预处理
X = data[['Quantity', 'UnitPrice']]

# 聚类
kmeans = KMeans(n_clusters=3)
data['Cluster'] = kmeans.fit_predict(X)

# 可视化
plt.scatter(data['Quantity'], data['UnitPrice'], c=data['Cluster'])
plt.title('Shopping Cart Analysis')
plt.xlabel('Quantity')
plt.ylabel('Unit Price')
plt.show()

9. 大气污染分析

  • 数据集: Air Quality Data
  • 描述: 分析空气质量数据,使用随机森林模型进行预测。
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor

# 读取数据
data = pd.read_csv('air_quality.csv')
X = data.drop('CO(GT)', axis=1)
y = data['CO(GT)']

# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 随机森林
model = RandomForestRegressor()
model.fit(X_train, y_train)

# 预测
predictions = model.predict(X_test)

10. 电商评论分析

import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB

# 读取数据
reviews = pd.read_csv('reviews.csv')

# 特征提取
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(reviews['reviewText'])
y = reviews['sentiment']

# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练模型
model = MultinomialNB()
model.fit(X_train, y_train)

# 预测
predictions = model.predict(X_test)

总结

以上是11个Python数据分析实战项目,每个项目都提供了完整的代码示例和数据集下载链接。这些项目可以帮助你更好地理解数据分析的基本概念和技术,同时提升你的编程能力。随着项目的不断深入,你可以逐步探索更复杂的分析和机器学习模型。希望这些项目能够激发你的灵感,助你在数据分析的道路上越走越远。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一只蜗牛儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值