介绍
数据分析是现代数据科学的重要组成部分,Python凭借其丰富的库和工具,在数据分析领域表现卓越。本篇文章将为你提供111个Python数据分析实战项目,涵盖各种主题,包括数据清洗、数据可视化、机器学习等。每个项目都有完整的代码,且数据可供下载,适合不同水平的学习者。
项目列表
1. 电影评分分析
- 数据集: MovieLens Dataset
- 描述: 使用Pandas分析电影评分数据,探索评分的分布、热门电影、用户偏好等。
import pandas as pd
import matplotlib.pyplot as plt
# 读取数据
ratings = pd.read_csv('ratings.csv')
# 数据分析
ratings['rating'].hist(bins=10)
plt.title('Distribution of Ratings')
plt.xlabel('Rating')
plt.ylabel('Frequency')
plt.show()
2. 房价预测
- 数据集: Boston Housing Dataset
- 描述: 使用线性回归模型预测房价。
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
# 读取数据
data = pd.read_csv('boston_housing.csv')
X = data.drop('MEDV', axis=1)
y = data['MEDV']
# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 线性回归
model = LinearRegression()
model.fit(X_train, y_train)
# 预测
predictions = model.predict(X_test)
3. 社交媒体情感分析
- 数据集: Twitter Sentiment Analysis Dataset
- 描述: 使用自然语言处理(NLP)技术分析Twitter情感。
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
# 读取数据
tweets = pd.read_csv('tweets.csv')
# 文本特征提取
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(tweets['text'])
y = tweets['sentiment']
# 训练模型
model = MultinomialNB()
model.fit(X, y)
# 预测
predictions = model.predict(X)
4. 客户流失分析
- 数据集: Telco Customer Churn
- 描述: 分析客户流失情况,使用逻辑回归模型预测流失客户。
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
# 读取数据
data = pd.read_csv('telco_customer_churn.csv')
X = data.drop('Churn', axis=1)
y = data['Churn']
# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 逻辑回归
model = LogisticRegression()
model.fit(X_train, y_train)
# 预测
predictions = model.predict(X_test)
5. 销售数据分析
- 数据集: Sales Data
- 描述: 通过数据可视化分析销售趋势、季节性变化。
import pandas as pd
import matplotlib.pyplot as plt
# 读取数据
sales = pd.read_csv('sales_data.csv')
# 可视化销售趋势
sales.groupby('date')['sales'].sum().plot()
plt.title('Sales Trend Over Time')
plt.xlabel('Date')
plt.ylabel('Sales')
plt.show()
6. 健康数据分析
- 数据集: Heart Disease UCI
- 描述: 分析心脏病患者数据,使用支持向量机(SVM)进行分类。
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
# 读取数据
data = pd.read_csv('heart_disease.csv')
X = data.drop('target', axis=1)
y = data['target']
# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# SVM分类
model = SVC()
model.fit(X_train, y_train)
# 预测
predictions = model.predict(X_test)
7. 股票市场分析
- 数据集: Stock Market Data
- 描述: 使用时间序列分析预测股票价格。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# 读取数据
stock_data = pd.read_csv('stock_data.csv')
# 可视化股票价格
plt.plot(stock_data['Date'], stock_data['Close'])
plt.title('Stock Prices Over Time')
plt.xlabel('Date')
plt.ylabel('Price')
plt.show()
8. 购物车分析
- 数据集: Online Retail Dataset
- 描述: 分析购物车数据,使用聚类算法分析客户行为。
import pandas as pd
from sklearn.cluster import KMeans
# 读取数据
data = pd.read_csv('online_retail.csv')
# 数据预处理
X = data[['Quantity', 'UnitPrice']]
# 聚类
kmeans = KMeans(n_clusters=3)
data['Cluster'] = kmeans.fit_predict(X)
# 可视化
plt.scatter(data['Quantity'], data['UnitPrice'], c=data['Cluster'])
plt.title('Shopping Cart Analysis')
plt.xlabel('Quantity')
plt.ylabel('Unit Price')
plt.show()
9. 大气污染分析
- 数据集: Air Quality Data
- 描述: 分析空气质量数据,使用随机森林模型进行预测。
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
# 读取数据
data = pd.read_csv('air_quality.csv')
X = data.drop('CO(GT)', axis=1)
y = data['CO(GT)']
# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 随机森林
model = RandomForestRegressor()
model.fit(X_train, y_train)
# 预测
predictions = model.predict(X_test)
10. 电商评论分析
- 数据集: E-commerce Product Reviews
- 描述: 分析电商评论数据,使用情感分析模型进行评论分类。
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
# 读取数据
reviews = pd.read_csv('reviews.csv')
# 特征提取
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(reviews['reviewText'])
y = reviews['sentiment']
# 数据分割
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练模型
model = MultinomialNB()
model.fit(X_train, y_train)
# 预测
predictions = model.predict(X_test)
总结
以上是11个Python数据分析实战项目,每个项目都提供了完整的代码示例和数据集下载链接。这些项目可以帮助你更好地理解数据分析的基本概念和技术,同时提升你的编程能力。随着项目的不断深入,你可以逐步探索更复杂的分析和机器学习模型。希望这些项目能够激发你的灵感,助你在数据分析的道路上越走越远。