Python数据分析实战项目——淘宝用户行为分析

目录

一、项目背景

二、数据收集

2.1 数据来源

2.2 数据信息

2.3 项目目标

2.3.1 分析目的

2.3.2 分析目标

三、数据读取与清洗

3.1 导入数据

3.2 重复值处理

3.3 缺失值处理

3.4 时间处理

四、 数据分析

4.1 用户行为分析

4.1.1 整体概况(UV、PV、平均访问量、交易总数、交易用户比例,复购率和跳失率)

4.1.1.1(UV、PV、平均访问量、交易总数、交易用户比例)

4.1.1.2 跳失率和复购率

4.1.2 用户转化漏斗分析

4.1.2.1 总体行为漏斗分析

4.1.2.2 独立访客行为漏斗分析

4.2 时间维度分析

4.2.1 用户行为时间维度分析

4.2.2 用户量时间维度分析

4.3 用户群体分类:RFM模型分析

4.4 商品分析

五、总结

5.1 用户行为分析

5.2  时间维度分析

5.3 RMF模型分析

5.4 商品维度分析


一、项目背景

UserBehavior是阿里巴巴提供的一个淘宝用户行为数据集,用于隐式反馈推荐问题的研究。数据集包含了2017年11月25日至2017年12月3日之间,有行为的约一百万随机用户的所有行为(行为包括点击、购买、加购、喜欢)。

构造推荐系统的关键资源是用户历史行为数据,具体可分为两类:显式反馈和隐式反馈。

显式反馈:直接表现用户的喜好倾向,如评分等。

优点:

  • 能提供更可靠的数据,不涉及从操作中提取偏好
  • 个性化程度足够高
  • 能够立即反馈给推荐系统

缺点:

  • 需要用户的努力,而用户不总有时间和兴趣提供足够的信息
  • 用户评分的主观性较强,会受到社会评价影响
  • 数据量较少

隐式反馈:不直接表现用户倾向的历史数据,如转发微博、浏览网站或购买商品等。

优点:

  • 从系统行为推断用户的偏好来减轻用户的负担
  • 隐形偏好数据相对更客观,用户不必以社会期望的方式做出回应,也没有自我形象问题或维护形象的需要
  • 数据量大

缺点:

  • 不太准确
  • 需要处理数据后才能反馈给推荐系统

二、数据收集

2.1 数据来源

https://tianchi.aliyun.com/dataset/649?t=1710751744909

2.2 数据信息

文件名称

说明

包含特征
UserBehavior.csv 包含所有的用户行为数据 用户ID,商品ID,商品类目ID,行为类型,时间戳

本数据集包含了2017年11月25日至2017年12月3日之间,有行为的约一百万随机用户的所有行为(行为包括点击、购买、加购、喜欢)。数据集的每一行表示一条用户行为,由用户ID、商品ID、商品类目ID1、行为类型和时间戳组成,并以逗号分隔。关于数据集中每一列的详细描述如下:

列名称 说明
用户ID 整数类型,序列化后的用户ID
商品ID 整数类型,序列化后的商品ID
商品类目ID 整数类型,序列化后的商品所属类目ID
行为类型 字符串,枚举类型,包括('pv', 'buy', 'cart', 'fav')
时间戳 行为发生的时间戳

用户行为类型共有四种,它们分别是

行为类型 说明
pv 商品详情页pv,等价于点击
buy 商品购买
cart 将商品加入购物车
fav 收藏商品

2.3 项目目标

2.3.1 分析目的

用户角度:为用户推荐其真正感兴趣的商品,提高用户忠诚度。

网站角度:达到精准营销,提高成交转化率。

2.3.2 分析目标

1. 用户行为分析

        ①整体概况(PV,UV,复购率,跳失率等)

        ②用户转化漏斗分析

2. 时间维度分析--用户在哪些时间段活跃

        ①用户行为时段分析

        ②用户量时段分析

3. 商品分析--用户对哪些商品、类目感兴趣

        ①热门商品分析

        ②热门商品类目分析

4. 用户群体分类:RFM模型分析

三、数据读取与清洗

3.1 导入数据

首先导入数据,并根据对应列的描述给定列名,增强可读性;由于数据量过大,选取前100w行进行分析。

3.2 重复值处理

查看是否有重复值:无重复值。

3.3 缺失值处理

查看是否有空值:无空值。

查看每列的唯一值数量。

访问用户总数:9739

商品总数:399114

商品类目总数:5796

3.4 时间处理

将时间戳转为日期,由于数据集分析时间范围是2017-11-25至2017-12-03,剔除日期以外的数据。to_datetime不会处理时区问题,因此将Unix 时间戳转换为中国时区时间要加8小时,转换完成后保留2017-11-25至2017-12-03期间的数据,重置索引,接着按照日期和小时进行时间拆分,最后删除时间戳。

四、 数据分析

4.1 用户行为分析

4.1.1 整体概况(UV、PV、平均访问量、交易总数、交易用户比例,复购率和跳失率)

4.1.1.1(UV、PV、平均访问量、交易总数、交易用户比例)

可以得到:

独立访问用户总数(UV):9739

页面总访问量(PV):895636</

### 回答1: 阿里天池淘宝2017-11用户行为数据分析是基于Hive进行的。Hive是一个构建在Hadoop之上的数据仓库基础架构,提供了类似于SQL的查询语言HiveQL,使用户能够在大规模数据集上进行数据查询和分析。 在进行淘宝用户行为数据分析时,首先需要将原始数据导入Hive数据仓库中。数据源可以是来自淘宝用户行为日志文件,其中包含了用户在淘宝平台上的各种行为,例如浏览商品、点击广告、添加购物车、购买等等。 然后,使用HiveQL语言编写查询语句,通过Hive进行数据分析数据分析的目标可能包括但不限于:用户行为的频率分布、用户购买转化率、热门商品排行、用户购买决策的时间分布等等。通过对用户行为数据进行分析,阿里天池淘宝可以洞察用户行为的规律,发现用户需求和购物习惯,从而为优化产品和推广策略提供参考。 Hive的优势之一是可以处理大规模的数据,因此对于淘宝这样拥有海量用户和数据的平台而言,使用Hive进行用户行为数据分析非常合适。此外,Hive还提供了数据仓库的概念,可以通过不同的方式将数据进行结构化和存储,以方便后续的查询和分析。 综上所述,阿里天池淘宝2017-11用户行为数据分析基于Hive,通过将用户行为数据导入Hive数据仓库,利用HiveQL进行查询和分析,从而洞察用户行为规律,为产品和推广策略优化提供依据。Hive作为一个大数据处理工具,对于处理淘宝这样海量用户和数据的平台来说是非常适用的。 ### 回答2: 阿里巴巴天池是一个面向数据科学家和机器学习爱好者的在线数据科学竞赛平台,提供丰富多样的数据集和竞赛任务。其中,淘宝用户行为数据分析是天池平台的一个竞赛任务。在这个竞赛中,参赛者需要使用Hive来完成对淘宝2017年11月的用户行为数据进行分析。 Hive是基于Hadoop的数据仓库系统,它可以处理大规模数据,并提供了类似于SQL的查询语言,使得用户可以通过编写SQL式的语句来查询和分析数据。在淘宝用户行为数据分析任务中,Hive可以帮助分析师和数据科学家从大量数据中提取有用的信息。 通过Hive,我们可以利用淘宝用户行为数据进行各种分析,如用户购买行为、浏览行为、搜索行为等。我们可以使用Hive的查询语句来筛选、聚合和统计数据,以得出用户行为的关键指标。 一种常见的使用Hive进行用户行为数据分析的方法是利用Hive提供的内置函数和操作符来进行数据的转换和计算。通过使用Hive的内置函数,我们可以对用户行为数据进行预处理,如将日期格式化、提取关键字等。然后,我们可以使用Hive的聚合函数和操作符来计算用户行为的各种指标,如总购买金额、平均浏览次数等。 此外,Hive还支持用户自定义函数和UDAF(用户自定义聚合函数),这使得分析师和数据科学家可以根据自己的需求来扩展Hive的功能。通过编写自定义函数,我们可以在Hive中实现更加复杂的计算和分析。 总的来说,通过Hive,我们可以使用SQL式的查询语言对阿里天池淘宝2017年11月的用户行为数据进行分析。通过Hive的内置函数和操作符,以及用户自定义函数和UDAF,我们可以从大规模的数据中提取有用的信息,并计算出用户行为的各项指标。 ### 回答3: 阿里天池淘宝2017-11用户行为数据分析基于Hive,可以使用Hive这个大数据存储和计算框架对淘宝2017年11月的用户行为数据进行分析。 Hive是一个基于Hadoop的数据仓库基础架构,可以将大规模数据集存储在Hadoop集群中,并同时提供类似于关系型数据库的查询和分析功能。通过Hive,可以利用SQL的方式对大规模数据进行查询和分析,使得数据分析师更加方便地处理和分析海量数据。 对于淘宝2017-11用户行为数据,可以将其导入Hive中进行分析。首先,可以创建一个Hive表,定义各个字段的名称和数据类型,然后将用户行为数据导入到这个表中。接着,可以使用Hive提供的SQL语句进行各种查询和分析。 例如,可以通过查询语句统计每个用户的购买次数、浏览次数、加入购物车次数等行为情况,从而分析用户的购买意向和行为模式。也可以对用户的购买行为进行细分,比如按照地区、商品类别等进行分组,以了解不同用户群体的购物习惯和喜好。此外,还可以对用户行为的时间分布进行分析,了解用户在不同时间段的活跃度和购买偏好。 通过Hive的数据分析功能,可以深入挖掘淘宝2017-11用户行为数据中潜在的商业价值,为企业的市场营销和业务决策提供重要参考依据。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值