NoSQL数据库简介
1.1. 技术发展
技术的分类
1、解决功能性的问题:Java、Jsp、RDBMS、Tomcat、HTML、Linux、JDBC、SVN
2、解决扩展性的问题:Struts、Spring、SpringMVC、Hibernate、Mybatis
3、解决性能的问题:NoSQL、Java线程、Hadoop、Nginx、MQ、ElasticSearch
1.1.1. Web1.0时代
Web1.0的时代,数据访问量很有限,用一夫当关的高性能的单点服务器可以解决大部分问题。
1.1.2. Web2.0时代
随着Web2.0的时代的到来,用户访问量大幅度提升,同时产生了大量的用户数据。加上后来的智能移动设备的普及,所有的互联网平台都面临了巨大的性能挑战。
1.1.3. 解决CPU及内存压力
1.1.4. 解决IO压力
1.2. NoSQL数据库
1.2.1. NoSQL数据库概述
NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,泛指非关系型的数据库。
NoSQL 不依赖业务逻辑方式存储,而以简单的key-value模式存储。因此大大的增加了数据库的扩展能力。
- 不遵循SQL标准。
- 不支持ACID。
- 远超于SQL的性能。
1.2.2. NoSQL适用场景
- 对数据高并发的读写
- 海量数据的读写
- 对数据高可扩展性的
1.2.3. NoSQL不适用场景
- 需要事务支持
- 基于sql的结构化查询存储,处理复杂的关系,需要即席查询。
- (用不着sql****的和用了sql也不行的情况,请考虑用NoSql)
1.2.4. Memcache
- 很早出现的NoSql数据库,数据都在内存中,
- 一般不持久化,支持简单的key-value模式,支持类型单一.
- 一般是作为缓存数据库辅助持久化的数据库
1.2.5. Redis
- 几乎覆盖了Memcached的绝大部分功能
- 数据都在内存中,支持持久化,主要用作备份恢复
- 除了支持简单的key-value模式,还支持多种数据结构的存储,比如 list、set、hash、zset等。
- 一般是作为缓存数据库辅助持久化的数据库
1.2.6. MongoDB
- 高性能、开源、模式自由(schema free)的文档型数据库
- 数据都在内存中, 如果内存不足,把不常用的数据保存到硬盘
- 虽然是key-value模式,但是对value(尤其是json)提供了丰富的查询功能
- 支持二进制数据及大型对象
- 可以根据数据的特点替代RDBMS ,成为独立的数据库。或者配合RDBMS,存储特定的数据。
1.3. 行式存储数据库(大数据时代)
1.3.1. 行式数据库
1.3.2. 列式数据库
1.3.2.1. Hbase
HBase是Hadoop项目中的数据库。它用于需要对大量的数据进行随机、实时的读写操作的场景中。
HBase的目标就是处理数据量非常庞大的表,可以用普通的计算机处理超过10****亿行数据,还可处理有数百万列元素的数据表。
1.3.2.2. Cassandra
[kəˈsændrə]
Apache Cassandra是一款免费的开源NoSQL数据库,其设计目的在于管理由大量商用服务器构建起来的庞大集群上的海量数据集(数据量通常达到PB级别)。在众多显著特性当中,Cassandra最为卓越的长处是对写入及读取操作进行规模调整,而且其不强调主集群的设计思路能够以相对直观的方式简化各集群的创建与扩展流程。
计算机存储单位 计算机存储单位一般用B,KB,MB,GB,TB,EB,ZB,YB,BB来表示,它们之间的关系是:
- 位 bit (比特)(Binary Digits):存放一位二进制数,即 0 或 1,最小的存储单位。
- 字节 byte:8个二进制位为一个字节(B),最常用的单位。
- 1KB (Kilobyte 千字节)=1024B,
- 1MB (Megabyte 兆字节 简称“兆”)=1024KB,
- 1GB (Gigabyte 吉字节 又称“千兆”)=1024MB,
- 1TB (Trillionbyte 万亿字节 太字节)=1024GB,其中1024=2^10 ( 2 的10次方),
- 1PB(Petabyte 千万亿字节 拍字节)=1024TB,
- 1EB(Exabyte 百亿亿字节 艾字节)=1024PB,
- 1ZB (Zettabyte 十万亿亿字节 泽字节)= 1024 EB,
- 1YB (Jottabyte 一亿亿亿字节 尧字节)= 1024 ZB,
- 1BB (Brontobyte 一千亿亿亿字节)= 1024 YB. 注:“兆”为百万级数量单位。
1.4. 图关系型数据库
主要应用:社会关系,公共交通网络,地图及网络拓谱(n*(n-1)/2)
1.5. DB-Engines 数据库排名
http://db-engines.com/en/ranking
2. Redis概述安装
- Redis是一个开源的key-value存储系统。
- 和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set –有序集合)和hash(哈希类型)。
- 这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。
- 在此基础上,Redis支持各种不同方式的排序。
- 与memcached一样,为了保证效率,数据都是缓存在内存中。
- 区别的是Redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件。
- 并且在此基础上实现了master-slave(主从)同步。
2.1. 应用场景
2.1.1. 配合关系型数据库做高速缓存
- 高频次,热门访问的数据,降低数据库IO
- 分布式架构,做session共享
2.1.2. 多样的数据结构存储持久化数据
2.2. Redis安装
Redis官方网站 | Redis中文官方网站 |
---|---|
http://redis.io | http://redis.cn/ |
2.2.1. 安装版本
- 6.2.7 for Linux(redis-6.2.7.tar.gz)
- 不用考虑在windows环境下对Redis的支持
狗屁windows装不了…
2.2.2. 安装步骤
a> 安装最新的gcc编译器
安装C 语言的编译环境
yum install centos-release-scl scl-utils-build
yum install -y devtoolset-8-toolchain
scl enable devtoolset-8 bash
测试 gcc版本
gcc --version
b>下载
下载redis-6.2.7.tar.gz放/opt目录
tar -zxvf redis-6.2.7.tar.gz
cd redis-6.2.7
c> 编译
在redis-6.2.7目录下再次执行make命令(只是编译好)
d> 可能的问题
如果没有准备好C语言编译环境,make 会报错—Jemalloc/jemalloc.h:没有那个文件
解决方案:运行make distclean
在redis-6.2.7目录下再次执行make命令(只是编译好)
e> 安装
跳过make test 继续执行: make install
2.2.3. 安装目录:
查看默认安装目录:/usr/local/bin
redis-benchmark:性能测试工具,可以在自己本子运行,看看自己本子性能如何
redis-check-aof:修复有问题的AOF文件,rdb和aof后面讲
redis-check-dump:修复有问题的dump.rdb文件
redis-sentinel:Redis集群使用
redis-server:Redis服务器启动命令
redis-cli:客户端,操作入口
2.2.4. 启动
前台启动(不推荐)
前台启动,命令行窗口不能关闭,否则服务器停止
redis-server
** 后台启动(推荐)
备份redis.conf
拷贝一份redis.conf到其他目录
cp /opt/redis-3.2.5/redis.conf /etc/redis.conf
后台启动设置daemonize no改成yes
修改redis.conf(128行)文件将里面的daemonize no 改成 yes,让服务在后台启动
启动
redis-server/myredis/redis.conf #后台启动
redis-cli #访问客户端
shutdown #进入cli客户端后可以关闭redis服务
exit #退出cli客户端
2.2.5.5. 多个端口可以:redis-cli -p 6379
多实例关闭,指定端口关闭:redis-cli -p 6379 shutdown
2.2.6.Redis 介绍相关知识
端口6379从何而来 :Alessia Merz
默认16个数据库,类似数组下标从0开始,初始默认使用0号库 使用命令
select <dbid>
来切换数据库。如: select 8 统一密码管理,所有库同样密码。 dbsize查看当前数据库的key的数量 flushdb清空当前库 flushall通杀全部库
Redis是单线程+多路IO复用技术 (效率更高)
多路复用是指使用一个线程来检查多个文件描述符(Socket)的就绪状态,比如调用select和poll函数,传入多个文件描述符,如果有一个文件描述符就绪,则返回,否则阻塞直到超时。得到就绪状态后进行真正的操作可以在同一个线程里执行,也可以启动线程执行(比如使用线程池)
串行 vs 多线程+锁(memcached) vs 单线程+多路IO复用(Redis)
(与Memcache三点不同: 支持多数据类型,支持持久化,单线程+多路IO复用)
3. 常用五大数据类型
redis常见数据类型操作命令http://www.redis.cn/commands.html
3.0. Redis键(key)
针对key的基本操作
keys * #查看当前库所有key (匹配:keys *1)
exits key # 判断某个key是否存在
type key # 查看key的类型
del key # 删除指定的key数据
unlink key # 根据value选择非阻塞删除
#仅将keys从keyspace元数据中删除,真正的删除会在后续异步操作。
expire key 10 # 设置key的过期时间 单位s
ttl key #查看还有多少秒过期,-1表示永不过期,-2表示已过期
对库的操作
select # 命令切换数据库
dbsize # 查看当前数据库的key的数量
flushdb # 清空当前库
flushall #清空全部库
3.1. Redis字符串 (String)
3.1.1. 简介
String是Redis最基本的类型,你可以理解成与Memcached一模一样的类型,一个key对应一个value。
String类型是二进制安全的。意味着Redis的string可以包含任何数据。比如jpg图片或者序列化的对象。
String类型是Redis最基本的数据类型,一个Redis中字符串value最多可以是512M
3.1.2. 常用命令
set <key> <value> # 添加键值对
# set k 100 是<k,"100">
可选项:
- NX:当数据库中key不存在时,可以将key-value添加数据库
- XX:当数据库中key存在时,可以将key-value添加数据库,与NX参数互斥
- EX:key的超时秒数PX:key的超时毫秒数,与EX互斥
get <key> # 查询对应键值 查不到返回(nil)
append <key><value> # 将给定的<value> 追加到原值的末尾
strlen <key> # 获得值的长度
setnx <key><value> # 只有在 key 不存在时 设置 key 的值
incr <key> # 将 key中储存的数字值增1 原子操作!
#只能对数字值操作,如果为空,新增值为1
decr <key> # 将 key 中储存的数字值减1 原子操作!
# 只能对数字值操作,如果为空,新增值为-1
incrby <key> <大小> # 将 key 中储存的数字值增加自定义大小。
decrby <key> <大小> # 将 key 中储存的数字值减小自定义大小。
原子性
所谓原子操作是指不会被线程调度机制打断的操作; 这种操作一旦开始,就一直运行到结束,中间不会有任何 context switch (切换到另一个线程)。
(1)在单线程中, 能够在单条指令中完成的操作都可以认为是"原子操作",因为中断只能发生于指令之间。
(2)在多线程中,不能被其它进程(线程)打断的操作就叫原子操作。 Redis单命令的原子性主要得益于Redis的单线程。
案例: java中的i++是否是原子操作?不是
mset <key1><value1><key2><value2> ... # 同时设置一个或多个 key-value对
mget <key1><key2><key3> ... # 同时获取一个或多个 value
msetnx <key1><value1><key2><value2> ... # 仅当所有给定 key 都不存在时,设置多个k-v对.
getrange <key><起始位置><结束位置> # 获得值的范围,类似java中的substring,[开区间 ]
setrange <key><起始位置><value> # ,从<起始位置>开始用<value>覆盖<key>所储存的字符串值
setex <key><过期时间><value> # 设置键值的同时,设置过期时间,单位s。
getset <key><value> # 设置key的新值,同时返回旧值。
3.1.3. 底层数据结构
String的数据结构为简单动态字符串(Simple Dynamic String,缩写SDS)。是可以修改的字符串,内部结构实现上类似于Java的ArrayList,采用预分配冗余空间的方式来减少内存的频繁分配.
如图中所示,内部为当前字符串实际分配的空间capacity一般要高于实际字符串长度len。当字符串长度小于1M时,扩容都是加倍现有的空间,如果超过1M,扩容时一次只会多扩1M的空间。需要注意的是字符串最大长度为512M。
3.3. Redis列表 (List)
3.3.1. 简介
单键多值
Redis 列表是简单的字符串列表,按照插入顺序排序。你可以添加一个元素到列表的头部(左边)或者尾部(右边)。
重要的事情说三遍,默认从左到右!!! 特别是索引,从左面开始数
它的底层实际是个双向链表结构,对两端的操作性能很高,通过索引下标的操作中间的节点性能会较差。
3.3.2. 常用命令
lpush <key><value1><value2><value3> ... # 从左边/右边插入一个或多个值。
rpush <key><value1><value2><value3> ...
lpop <key> # 从左边/右边弹出一个值。值在键在,值光键亡(nil)。
rpop <key>
rpoplpush <key1><key2> # 从<key1>列表右边吐出一个值,插到<key2>列表左边。
单纯的觉得这种命令有毛病...
lrange <key><start><stop> # 按照索引下标获得元素 [开区间]
lrange mylist 0 -1 # 获取所有元素 0左边第一个,-1右边第一个
lindex <key><index> # 获取指定下标的元素
llen <key> # 获得列表长度
linsert <key> before|after <value><newvalue> # 在<value>的前|后面插入<newvalue>
lrem <key> <n> <value> # 从左边删除n个value 没有那么多value就有多少删多少
lset <key> <index> <value> # 将key列表中下标为index的值替换成value
3.3.3. 数据结构
List的数据结构为快速链表quickList。
首先在列表元素较少的情况下会使用一块连续的内存存储,这个结构是ziplist,也即是压缩列表。
所有的元素紧挨着一起存储。
当数据量比较多的时候才会改成quicklist。
因为普通的链表需要的附加指针空间太大,会比较浪费空间。比如这个列表里存的只是int类型的数据,结构上还需要两个额外的指针prev和next。
Redis将链表和ziplist结合起来组成了quicklist。也就是将多个ziplist使用双向指针串起来使用。这样既满足了快速的插入删除性能,又不会出现太大的空间冗余。
3.3. Redis集合 (Set)
3.3.1. 简介
Redis set对外提供的功能与list类似是一个列表的功能,特殊之处在于set是可以自动排重的,当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set集合内的重要接口,这个也是list所不能提供的。
Redis的Set是string类型的无序集合。它底层其实是一个value为null的hash表,所以添加,删除,查找的复杂度都是O(1)。
一个算法,随着数据的增加,执行时间的长短,如果是O(1),数据增加,查找数据的时间不变
3.3.2. 常用命令
sadd <key><value1><value2> ... # 将一个或多个 member 元素加入到集合 key 中,已经存在的 member 元素将被忽略
smembers <key> # 取出该集合的所有值。
sismember <key><value> # 判断集合<key>是否为含有该<value>值,有1,没有0
scard<key> # 返回该集合的元素个数。
srem <key><value1><value2> ... # 删除集合中的某些元素。
spop <key> # 随机从该集合中吐出一个值。
srandmember <key><n> # 随机从该集合中取出n个值。不会从集合中删除 。
smove <source><destination>value # 把value值从一个集合移动到另一个集合
sinter <key1><key2> # 返回两个集合的交集元素。
sunion <key1><key2> # 返回两个集合的并集元素。
sdiff <key1><key2> # 返回两个集合的差集元素(key1-key2)
3.3.3.数据结构
Set数据结构是dict字典,字典是用哈希表实现的。
Java中HashSet的内部实现使用的是HashMap,只不过所有的value都指向同一个对象。Redis的set结构也是一样,它的内部也使用hash结构,所有的value都指向同一个内部值。
3.4. Redis哈希-(Hash)
3.4.1. 简介
Redis hash 是一个键值对集合。
Redis hash是一个string类型的field和value的映射表,hash特别适合用于存储对象。
类似Java里面的Map<String,Object>
例如:
用户ID为key,存储的value为用户对象包含姓名,年龄,生日等信息.
如果用普通的key/value结构来存储
使用hash
通过 key(用户****ID) + field(属性标签) 就可以操作对应属性数据了,既不需要重复存储数据,也不会带来序列化和并发修改控制的问题
3.4.2. 常用命令
hset <key><field><value> # 给<key>集合中的 <field>属性赋值<value>
hget <key1><field> # 从<key1>集合<field>的值
hmset <key><field1><value1><field2><value2>... # 批量设置key的f-v
hexists<key1><field> #查看哈希表 key 中,给定 field 是否存在。
hkeys <key> # 列出该hash集合的所有field
hvals <key> # 列出该hash集合的所有value
hincrby <key><field><increment> # 为哈希表 key 中的域 field 的值加上增量 1/-1
hsetnx <key><field><value> # 哈希表 key 中添加 field-value ,当且仅当域 field 不存在 .
3.4.3. 数据结构
Hash类型对应的数据结构是两种:ziplist(压缩列表),hashtable(哈希表)。当field-value长度较短且个数较少时,使用ziplist,否则使用hashtable。
3.5. Redis有序集合Zset
3.5.1. 简介
Redis有序集合zset与普通集合set非常相似,是一个没有重复元素的字符串集合。
不同之处是有序集合的每个成员都关联了一个评分(score),这个 score 被用来按照从最低分到最高分的方式排序集合中的成员。集合的成员是唯一的,但是可以是重复。
因为元素是有序的, 所以可以很快的根据 score 或者次序(position)来获取一个范围的元素。
访问有序集合的中间元素也是非常快的,因此你能够使用有序集合作为一个没有重复成员的智能列表。
3.5.2. 常用命令
zadd <key><score1><value1><score2><value2> # 将一个或多个 member 元素及其 score 值加入到有序set key 当中。
zrange <key><start><stop> [WITHSCORES] # 返回有序集 key 中,下标在<start><stop>之间的元素 [0,-1]依旧是全集
# 可选项WITHSCORES,可以让分数一起和值返回到结果集。
zrangebyscore key minmax [withscores] [limit offset count]
# 返回有序集 key 中,所有 score 值介于 [min,max] 之间的成员。按 score 递增排列。
zrevrangebyscore key maxmin [withscores] [limit offset count]
# 同上,返回值从大到小。
zincrby <key><increment><value> # 吧value的score增加increment
zrem <key><value> # 删除该集合下,指定值的元素
zcount <key><min><max> # 统计该集合,分数区间[ , ]的个数
zrank <key><value> # 返回该值在集合中的排名,从0开始!!
案例:如何利用zset实现一个文章访问量的排行榜?
3.5.3. 数据结构
SortedSet(zset)是Redis提供的一个非常特别的数据结构,一方面它等价于Java的数据结构Map<String, Double>,可以给每一个元素value赋予一个权重score,另一方面它又类似于TreeSet,内部的元素会按照权重score进行排序,可以得到每个元素的名次,还可以通过score的范围来获取元素的列表。
zset底层使用了两个数据结构
(1)hash,hash的作用就是关联元素value和权重score,保障元素value的唯一性,可以通过元素value找到相应的score值。
(2)跳跃表,跳跃表的目的在于给元素value排序,根据score的范围获取元素列表。
3.5.4. 跳跃表(跳表)
1、简介
有序集合在生活中比较常见,例如根据成绩对学生排名,根据得分对玩家排名等。对于有序集合的底层实现,可以用数组、平衡树、链表等。数组不便元素的插入、删除;平衡树或红黑树虽然效率高但结构复杂;链表查询需要遍历所有效率低。Redis采用的是跳跃表。跳跃表效率堪比红黑树,实现远比红黑树简单。
2、实例
对比有序链表和跳跃表,从链表中查询出51
(1) 有序链表
要查找值为51的元素,需要从第一个元素开始依次查找、比较才能找到。共需要6次比较。
(2) 跳跃表
从第2层开始,1节点比51节点小,向后比较。
21节点比51节点小,继续向后比较,后面就是NULL了,所以从21节点向下到第1层
在第1层,41节点比51节点小,继续向后,61节点比51节点大,所以从41向下
在第0层,51节点为要查找的节点,节点被找到,共查找4次。
从此可以看出跳跃表比有序链表效率要高
4. Redis配置文件介绍
自定义目录:/myredis/redis.conf
win10目录,安装文件夹下的redis.windows.conf和redis.windows-service.conf
4.1. ##Units单位###
配置大小单位,开头定义了一些基本的度量单位,只支持bytes,不支持bit
大小写不敏感
win10:
# Redis configuration file example
# Note on units: when memory size is needed, it is possible to specify
# it in the usual form of 1k 5GB 4M and so forth:
#
# 1k => 1000 bytes
# 1kb => 1024 bytes
# 1m => 1000000 bytes
# 1mb => 1024*1024 bytes
# 1g => 1000000000 bytes
# 1gb => 1024*1024*1024 bytes
#
# units are case insensitive so 1GB 1Gb 1gB are all the same.
4.2.###INCLUDES包含###
################################## INCLUDES ###################################
# Include one or more other config files here. This is useful if you
# have a standard template that goes to all Redis servers but also need
# to customize a few per-server settings. Include files can include
# other files, so use this wisely.
#
# Notice option "include" won't be rewritten by command "CONFIG REWRITE"
# from admin or Redis Sentinel. Since Redis always uses the last processed
# line as value of a configuration directive, you'd better put includes
# at the beginning of this file to avoid overwriting config change at runtime.
#
# If instead you are interested in using includes to override configuration
# options, it is better to use include as the last line.
#
# include .\path\to\local.conf
# include c:\path\to\other.conf
类似jsp中的include,多实例的情况可以把公用的配置文件提取出来
4.3. ###网络相关配置###
4.3.1. bind
默认情况bind=127.0.0.1只能接受本机的访问请求 注释掉他
不写的情况下,无限制接受任何ip地址的访问
生产环境肯定要写你应用服务器的地址;服务器是需要远程访问的,所以需要将其注释掉
如果开启了protected-mode,那么在没有设定bind ip且没有设密码的情况下,Redis只允许接受本机的响应
win10
# By default, if no "bind" configuration directive is specified, Redis listens
# for connections from all the network interfaces available on the server.
# It is possible to listen to just one or multiple selected interfaces using
# the "bind" configuration directive, followed by one or more IP addresses.
#
# Examples:
#
# bind 192.168.1.100 10.0.0.1
# bind 127.0.0.1 ::1
#
# ~~~ WARNING ~~~ If the computer running Redis is directly exposed to the
# internet, binding to all the interfaces is dangerous and will expose the
# instance to everybody on the internet. So by default we uncomment the
# following bind directive, that will force Redis to listen only into
# the IPv4 lookback interface address (this means Redis will be able to
# accept connections only from clients running into the same computer it
# is running).
#
# IF YOU ARE SURE YOU WANT YOUR INSTANCE TO LISTEN TO ALL THE INTERFACES
# JUST COMMENT THE FOLLOWING LINE.
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# bind 127.0.0.1
保存配置,停止服务,重启启动查看进程,不再是本机访问了。
4.3.2. protected-mode
将本机访问保护模式设置no 默认yes
# Protected mode is a layer of security protection, in order to avoid that
# Redis instances left open on the internet are accessed and exploited.
#
# When protected mode is on and if:
#
# 1) The server is not binding explicitly to a set of addresses using the
# "bind" directive.
# 2) No password is configured.
#
# The server only accepts connections from clients connecting from the
# IPv4 and IPv6 loopback addresses 127.0.0.1 and ::1, and from Unix domain
# sockets.
#
# By default protected mode is enabled. You should disable it only if
# you are sure you want clients from other hosts to connect to Redis
# even if no authentication is configured, nor a specific set of interfaces
# are explicitly listed using the "bind" directive.
protected-mode no
4.3.3. Port
端口号,默认 6379
# Accept connections on the specified port, default is 6379 (IANA #815344).
# If port 0 is specified Redis will not listen on a TCP socket.
port 6379
4.3.4. tcp-backlog
设置tcp的backlog,backlog其实是一个连接队列,backlog队列总和=未完成三次握手队列 + 已经完成三次握手队列。
在高并发环境下你需要一个高backlog值来避免慢客户端连接问题。
# TCP listen() backlog.
#
# In high requests-per-second environments you need an high backlog in order
# to avoid slow clients connections issues. Note that the Linux kernel
# will silently truncate it to the value of /proc/sys/net/core/somaxconn so
# make sure to raise both the value of somaxconn and tcp_max_syn_backlog
# in order to get the desired effect.
tcp-backlog 511
注意Linux内核会将这个值减小到/proc/sys/net/core/somaxconn的值(128),所以需要确认增大/proc/sys/net/core/somaxconn和/proc/sys/net/ipv4/tcp_max_syn_backlog(128)两个值来达到想要的效果
4.3.5. timeout
一个空闲的客户端维持多少秒会关闭,0表示关闭该功能。即永不关闭。
win10:
# Unix socket.
#
# Specify the path for the Unix socket that will be used to listen for
# incoming connections. There is no default, so Redis will not listen
# on a unix socket when not specified.
#
# unixsocket /tmp/redis.sock
# unixsocketperm 700
# Close the connection after a client is idle for N seconds (0 to disable)
timeout 0
4.3.6. tcp-keepalive
对访问客户端的一种心跳检测,每个n秒检测一次。
单位为秒,如果设置为0,则不会进行Keepalive检测,建议设置成60
# TCP keepalive.
#
# If non-zero, use SO_KEEPALIVE to send TCP ACKs to clients in absence
# of communication. This is useful for two reasons:
#
# 1) Detect dead peers.
# 2) Take the connection alive from the point of view of network
# equipment in the middle.
#
# On Linux, the specified value (in seconds) is the period used to send ACKs.
# Note that to close the connection the double of the time is needed.
# On other kernels the period depends on the kernel configuration.
#
# A reasonable value for this option is 60 seconds.
tcp-keepalive 60
4.4.###GENERAL通用###
4.4.1. daemonize
是否为后台进程,设置为yes
守护进程,后台启动
win10不支持
################################# GENERAL #####################################
# By default Redis does not run as a daemon. Use 'yes' if you need it.
# Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
# NOT SUPPORTED ON WINDOWS daemonize no
4.4.2. pidfile
存放pid文件的位置,每个实例会产生一个不同的pid文件
win10不支持
# If you run Redis from upstart or systemd, Redis can interact with your
# supervision tree. Options:
# supervised no - no supervision interaction
# supervised upstart - signal upstart by putting Redis into SIGSTOP mode
# supervised systemd - signal systemd by writing READY=1 to $NOTIFY_SOCKET
# supervised auto - detect upstart or systemd method based on
# UPSTART_JOB or NOTIFY_SOCKET environment variables
# Note: these supervision methods only signal "process is ready."
# They do not enable continuous liveness pings back to your supervisor.
# NOT SUPPORTED ON WINDOWS supervised no
4.4.3. loglevel
指定日志记录级别,Redis总共支持四个级别:debug、verbose、notice、warning,默认为notice
四个级别根据使用阶段来选择,生产环境选择notice 或者warning
# Specify the server verbosity level.
# This can be one of:
# debug (a lot of information, useful for development/testing)
# verbose (many rarely useful info, but not a mess like the debug level)
# notice (moderately verbose, what you want in production probably)
# warning (only very important / critical messages are logged)
loglevel notice
4.4.4. logfile
日志文件名称
# Specify the log file name. Also 'stdout' can be used to force
# Redis to log on the standard output.
logfile "server_log.txt"
4.4.5. databases 16
设定库的数量 默认16,默认数据库为0
# Set the number of databases. The default database is DB 0, you can select
# a different one on a per-connection basis using SELECT <dbid> where
# dbid is a number between 0 and 'databases'-1
databases 16
4.5.###SECURITY安全###
4.5.1.设置密码
默认没有密码…
################################## SECURITY ###################################
# Require clients to issue AUTH <PASSWORD> before processing any other
# commands. This might be useful in environments in which you do not trust
# others with access to the host running redis-server.
#
# This should stay commented out for backward compatibility and because most
# people do not need auth (e.g. they run their own servers).
#
# Warning: since Redis is pretty fast an outside user can try up to
# 150k passwords per second against a good box. This means that you should
# use a very strong password otherwise it will be very easy to break.
#
# requirepass foobared
访问密码的查看、设置和取消
在命令中设置密码,只是临时的。重启redis服务器,密码就还原了。
永久设置,需要再配置文件中进行设置。
4.6. #### LIMITS限制###
4.6.1. maxclients
- 设置redis同时可以与多少个客户端进行连接。
- 默认情况下为10000个客户端。
- 如果达到了此限制,redis则会拒绝新的连接请求,并且向这些连接请求方发出“max number of clients reached”以作回应。
################################### LIMITS ####################################
# Set the max number of connected clients at the same time. By default
# this limit is set to 10000 clients, however if the Redis server is not
# able to configure the process file limit to allow for the specified limit
# the max number of allowed clients is set to the current file limit
# minus 32 (as Redis reserves a few file descriptors for internal uses).
#
# Once the limit is reached Redis will close all the new connections sending
# an error 'max number of clients reached'.
#
# maxclients 10000
4.6.2. maxmemory
- 建议必须设置,否则,将内存占满,造成服务器宕机
- 设置redis可以使用的内存量。一旦到达内存使用上限,redis将会试图移除内部数据,移除规则可以通过maxmemory-policy来指定。
- 如果redis无法根据移除规则来移除内存中的数据,或者设置了“不允许移除”,那么redis则会针对那些需要申请内存的指令返回错误信息,比如SET、LPUSH等。
- 但是对于无内存申请的指令,仍然会正常响应,比如GET等。如果你的redis是主redis(说明你的redis有从redis),那么在设置内存使用上限时,需要在系统中留出一些内存空间给同步队列缓存,只有在你设置的是“不移除”的情况下,才不用考虑这个因素。
# Don't use more memory than the specified amount of bytes.
# When the memory limit is reached Redis will try to remove keys
# according to the eviction policy selected (see maxmemory-policy).
#
# If Redis can't remove keys according to the policy, or if the policy is
# set to 'noeviction', Redis will start to reply with errors to commands
# that would use more memory, like SET, LPUSH, and so on, and will continue
# to reply to read-only commands like GET.
#
# This option is usually useful when using Redis as an LRU cache, or to set
# a hard memory limit for an instance (using the 'noeviction' policy).
#
# WARNING: If you have slaves attached to an instance with maxmemory on,
# the size of the output buffers needed to feed the slaves are subtracted
# from the used memory count, so that network problems / resyncs will
# not trigger a loop where keys are evicted, and in turn the output
# buffer of slaves is full with DELs of keys evicted triggering the deletion
# of more keys, and so forth until the database is completely emptied.
#
# In short... if you have slaves attached it is suggested that you set a lower
# limit for maxmemory so that there is some free RAM on the system for slave
# output buffers (but this is not needed if the policy is 'noeviction').
#
# WARNING: not setting maxmemory will cause Redis to terminate with an
# out-of-memory exception if the heap limit is reached.
#
# NOTE: since Redis uses the system paging file to allocate the heap memory,
# the Working Set memory usage showed by the Windows Task Manager or by other
# tools such as ProcessExplorer will not always be accurate. For example, right
# after a background save of the RDB or the AOF files, the working set value
# may drop significantly. In order to check the correct amount of memory used
# by the redis-server to store the data, use the INFO client command. The INFO
# command shows only the memory used to store the redis data, not the extra
# memory used by the Windows process for its own requirements. Th3 extra amount
# of memory not reported by the INFO command can be calculated subtracting the
# Peak Working Set reported by the Windows Task Manager and the used_memory_peak
# reported by the INFO command.
#
# maxmemory <bytes>
4.6.3. maxmemory-policy
- volatile-lru:使用LRU算法移除key,只对设置了过期时间的键;(最近最少使用)
- allkeys-lru:在所有集合key中,使用LRU算法移除key
- volatile-random:在过期集合中移除随机的key,只对设置了过期时间的键
- allkeys-random:在所有集合key中,移除随机的key
- volatile-ttl:移除那些TTL值最小的key,即那些最近要过期的key
- noeviction:不进行移除。针对写操作,只是返回错误信息
# MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
# is reached. You can select among five behaviors:
#
# volatile-lru -> remove the key with an expire set using an LRU algorithm
# allkeys-lru -> remove any key according to the LRU algorithm
# volatile-random -> remove a random key with an expire set
# allkeys-random -> remove a random key, any key
# volatile-ttl -> remove the key with the nearest expire time (minor TTL)
# noeviction -> don't expire at all, just return an error on write operations
#
# Note: with any of the above policies, Redis will return an error on write
# operations, when there are no suitable keys for eviction.
#
# At the date of writing these commands are: set setnx setex append
# incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
# sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
# zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
# getset mset msetnx exec sort
#
# The default is:
#
# maxmemory-policy noeviction
4.6.4.maxmemory-samples
- 设置样本数量,LRU算法和最小TTL算法都并非是精确的算法,而是估算值,所以你可以设置样本的大小,redis默认会检查这么多个key并选择其中LRU的那个。
- 一般设置3到7的数字,数值越小样本越不准确,但性能消耗越小。
# LRU and minimal TTL algorithms are not precise algorithms but approximated
# algorithms (in order to save memory), so you can tune it for speed or
# accuracy. For default Redis will check five keys and pick the one that was
# used less recently, you can change the sample size using the following
# configuration directive.
#
# The default of 5 produces good enough results. 10 Approximates very closely
# true LRU but costs a bit more CPU. 3 is very fast but not very accurate.
#
# maxmemory-samples 5
5. Redis的发布和订阅
5.1. 什么是发布和订阅
Redis 发布订阅 (pub/sub) 是一种消息通信模式:发送者 (pub) 发送消息,订阅者 (sub) 接收消息。
Redis 客户端可以订阅任意数量的频道。
说人话: 发布者发布了一条消息,订阅的人就能接收到
5.2. Redis的发布和订阅
1、客户端可以订阅频道如下图
2、当给这个频道发布消息后,消息就会发送给订阅的客户端
5.3. 发布订阅命令行实现
1、 打开一个客户端订阅channel1
SUBSCRIBE channel1
2、打开另一个客户端,给channel1发布消息hello
publish channel1 hello
返回的1是订阅者数量
3、打开第一个客户端可以看到发送的消息
注:发布的消息没有持久化,只能收到订阅后发布的消息
6. Redis新数据类型
6.1.Bitmaps
6.1.1. 简介
现代计算机用二进制(位) 作为信息的基础单位, 1个字节等于8位, 例如“abc”字符串是由3个字节组成, 但实际在计算机存储时将其用二进制表示, “abc”分别对应的ASCII码分别是97、 98、 99, 对应的二进制分别是01100001、 01100010和01100011,如下图
合理地使用操作位能够有效地提高内存使用率和开发效率。
Redis提供了Bitmaps这个“数据类型”可以实现对位的操作:
- Bitmaps本身不是一种数据类型, 实际上它就是字符串(key-value) , 但是它可以对字符串的位进行操作。
- Bitmaps单独提供了一套命令, 所以在Redis中使用Bitmaps和使用字符串的方法不太相同。 可以把Bitmaps想象成一个以位为单位的数组, 数组的每个单元只能存储0和1, 数组的下标在Bitmaps中叫做偏移量。
6.1.2. 命令
1.setbit
setbit<key><offset><value> # 设置Bitmaps中某个偏移量的值(0或1)
*offset:偏移量从0开始
实例
每个独立用户是否访问过网站存放在Bitmaps中, 将访问的用户记做1, 没有访问的用户记做0, 用偏移量作为用户的id。
设置键的第offset个位的值(从0算起) , 假设现在有20个用户,userid=1, 6, 11, 15, 19的用户对网站进行了访问, 那么当前Bitmaps初始化结果如图
unique:users:20201106代表2020-11-06这天的独立访问用户的Bitmaps
注:
很多应用的用户id以一个指定数字(例如10000) 开头, 直接将用户id和Bitmaps的偏移量对应势必会造成一定的浪费, 通常的做法是每次做setbit操作时将用户id减去这个指定数字。
在第一次初始化Bitmaps时, 假如偏移量非常大, 那么整个初始化过程执行会比较慢, 可能会造成Redis的阻塞。
2、getbit
getbit<key><offset> # 获取Bitmaps中某个偏移量的值
(2)实例
获取id=8的用户是否在2020-11-06这天访问过, 返回0说明没有访问过:
注:因为100根本不存在,所以也是返回0
3、bitcount
统计字符串被设置为1的bit数。一般情况下,给定的整个字符串都会被进行计数,通过指定额外的 start 或 end 参数,可以让计数只在特定的位上进行。start 和 end 参数的设置,都可以使用负数值:比如 -1 表示最后一个位,而 -2 表示倒数第二个位,start、end 是指bit组的字节的下标数,二者皆包含。
bitcount<key>[start end] # 统计字符串从start字节到end字节比特值为1的数量
(2)实例
计算2020-11-06这天的独立访问用户数量
start和end代表起始和结束字节数, 下面操作计算用户id在第1个字节到第3个字节之间的独立访问用户数, 对应的用户id是11, 15, 19。
注意:redis的setbit设置或清除的是bit位置,而bitcount计算的是byte位置。
4、bitop
bitop and(or/not/xor) <destkey> [key1 key2 ...]
bitop是一个复合操作, 它可以做多个Bitmaps的and(交集) 、 or(并集) 、 not(非) 、 xor(异或) 操作并将结果保存在destkey中。
实例
2020-11-04 日访问网站的userid=1,2,5,9。
setbit unique:users:20201104 1 1
setbit unique:users:20201104 2 1
setbit unique:users:20201104 5 1
setbit unique:users:20201104 9 1
2020-11-03 日访问网站的userid=0,1,4,9。
setbit unique:users:20201103 0 1
setbit unique:users:20201103 1 1
setbit unique:users:20201103 4 1
setbit unique:users:20201103 9 1
计算出两天都访问过网站的用户数量
bitop and unique:users:and:20201104_03 unique:users:20201103 unique:users:20201104
计算出n天内访问过网站的用户数量(例如月活跃就是类似这种) , 可以使用or求并集
6.1.3. Bitmaps与set对比
假设网站有1亿用户, 每天独立访问的用户有5千万, 如果每天用集合类型和Bitmaps分别存储活跃用户可以得到表
set和Bitmaps存储一天活跃用户对比 | |||
---|---|---|---|
数据 类型 | 每个用户id占用空间 | 需要存储的用户量 | 全部内存量 |
集合 类型 | 64位 | 50000000 | 64位*50000000 = 400MB |
Bitmaps | 1位 | 100000000 | 1位*100000000 = 12.5MB |
很明显, 这种情况下使用Bitmaps能节省很多的内存空间, 尤其是随着时间推移节省的内存还是非常可观的
set和Bitmaps存储独立用户空间对比 | |||
---|---|---|---|
数据类型 | 一天 | 一个月 | 一年 |
集合类型 | 400MB | 12GB | 144GB |
Bitmaps | 12.5MB | 375MB | 4.5GB |
但Bitmaps并不是万金油, 假如该网站每天的独立访问用户很少, 例如只有10万(大量的僵尸用户) , 那么两者的对比如下表所示, 很显然, 这时候使用Bitmaps就不太合适了, 因为基本上大部分位都是0。
set和Bitmaps存储一天活跃用户对比(独立用户比较少) | |||
---|---|---|---|
数据类型 | 每个userid占用空间 | 需要存储的用户量 | 全部内存量 |
集合类型 | 64位 | 100000 | 64位*100000 = 800KB |
Bitmaps | 1位 | 100000000 | 1位*100000000 = 12.5MB |
6.2. HyperLogLog
6.2.1. 简介
在工作当中,我们经常会遇到与统计相关的功能需求,比如统计网站PV(PageView页面访问量),可以使用Redis的incr、incrby轻松实现。
但像UV(UniqueVisitor,独立访客)、独立IP数、搜索记录数等需要去重和计数的问题如何解决?这种求集合中不重复元素个数的问题称为基数问题。
解决基数问题有很多种方案:
(1)数据存储在MySQL表中,使用distinct count计算不重复个数
(2)使用Redis提供的hash、set、bitmaps等数据结构来处理
以上的方案结果精确,但随着数据不断增加,导致占用空间越来越大,对于非常大的数据集是不切实际的。
能否能够降低一定的精度来平衡存储空间?Redis推出了HyperLogLog
Redis HyperLogLog 是用来做基数统计的算法,HyperLogLog 的优点是,在输入元素的数量或者体积非常非常大时,计算基数所需的空间总是固定的、并且是很小的。
在 Redis 里面,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的基数。这和计算基数时,元素越多耗费内存就越多的集合形成鲜明对比。
但是,因为 HyperLogLog 只会根据输入元素来计算基数,而不会储存输入元素本身,所以 HyperLogLog 不能像集合那样,返回输入的各个元素。
什么是基数?
比如数据集 {1, 3, 5, 7, 5, 7, 8}, 那么这个数据集的基数集为 {1, 3, 5 ,7, 8}, 基数(不重复元素)为5。 基数估计就是在误差可接受的范围内,快速计算基数。
6.2.2.命令
1. pfadd
pfadd <key>< element> [element ...] # 添加指定元素到 HyperLogLog 中
实例
将所有元素添加到指定HyperLogLog数据结构中。如果执行命令后HLL估计的近似基数发生变化,则返回1,否则返回0。
2. pfcount
pfcount<key1> [key2 key3 ...] # 计算HLL的近似基数,可以计算多个HLL,比如用HLL存储每天的UV,计算一周的UV可以使用7天的UV合并计算即可
实例
3. pfmerge
pfmerge<destkey><sourcekey> [sourcekey ...] # 将一个或多个HLL合并后的结果存储在另一个HLL中,比如每月活跃用户可以使用每天的活跃用户来合并计算可得
实例
6.3. Geospatial
6.3.1. 简介
Redis 3.2 中增加了对GEO类型的支持。GEO,Geographic,地理信息的缩写。该类型,就是元素的2维坐标,在地图上就是经纬度。redis基于该类型,提供了经纬度设置,查询,范围查询,距离查询,经纬度Hash等常见操作。
6.3.2. 命令
1. geoadd
geoadd<key> <longitude1><latitude1><member1> [longitude2 latitude2 member3...] # 添加地理位置(经度,纬度,名称)
实例
geoadd china:city 121.47 31.23 shanghai
geoadd china:city 106.50 29.53 chongqing 114.05 22.52 shenzhen 116.38 39.90 beijing
- 两极无法直接添加
- 一般会下载城市数据,直接通过 Java 程序一次性导入。
- 有效的经度从 -180 度到 180 度。有效的纬度从 -85.05112878 度到 85.05112878 度。
- 当坐标位置超出指定范围时,该命令将会返回一个错误。
- 集合属性 : 不能重复添加。
2. geopos
geopos <key><member> [member...] # 获得指定地区的坐标值
实例
3. geodist
geodist<key> <member1> <member2> [m|km|ft|mi] # 获取两个位置之间的直线距离
单位:
- m 米 - [默认值]。
- km 千米。
- mi 英里。
- ft 英尺。
实例
4. georadius
georadius<key>< longitude><latitude>radius m|km|ft|mi # 以给定的经纬度为中心,找出某一半径内的元素
# 参数: 集合名 经度 纬度 距离 单位
实例
7. Redis_Jedis_ 测试
7.1. Jedis所需要的jar包
<!-- https://mvnrepository.com/artifact/redis.clients/jedis -->
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>4.2.1</version>
</dependency>
7.2. 连接Redis注意事项
禁用Linux的防火墙:Linux(CentOS7)里执行命令
systemctl stop/disable firewalld.service
redis.conf中注释掉bind 127.0.0.1 ,然后 protected-mode no
7.3. Jedis使用
创建一个mave工程
创建测试程序
package com.atguigu.jedis;
import redis.clients.jedis.Jedis;
public class Demo01 {
public static void main(String[] args) {
Jedis jedis = new Jedis("192.168.137.3",6379);
String pong = jedis.ping();
System.out.println("连接成功:"+pong);
jedis.close();
}
}
7.4.测试相关数据类型
7.4.1. Jedis-API: Key
@Test
public void demo01(){
Jedis jedis =new Jedis("127.0.0.1",6379);
jedis.set("k1", "v1");
jedis.set("k2", "v2");
jedis.set("k3", "v3");
Set<String> keys = jedis.keys("*");
keys.forEach(System.out::println);
System.out.println(jedis.exists("k1"));
System.out.println(jedis.ttl("k1"));
System.out.println(jedis.get("k1"));
}
7.4.2. Jedis-API: String
jedis.mset("str1","v1","str2","v2","str3","v3"); System.out.println(jedis.mget("str1","str2","str3"));
7.4.3. Jedis-API: List
@Test
public void demoList(){
Jedis jedis =new Jedis("127.0.0.1",6379);
jedis.lpush("key1","lucy","mary","jack");
List<String> key1 = jedis.lrange("key1", 0, -1);
key1.forEach(System.out::println);
}
7.4.4. Jedis-API: set
@Test
public void demoSet() {
Jedis jedis = new Jedis("127.0.0.1", 6379);
jedis.sadd("name", "lucy", "jack", "lucy");
Set<String> name = jedis.smembers("name");
name.forEach(System.out::println);
}
7.4.5. Jedis-API: hash
@Test
public void demoHash() {
Jedis jedis = new Jedis("127.0.0.1", 6379);
jedis.hset("users","name","20");
Map<String,String> map = new HashMap<String,String>();
map.put("telphone","13810169999");
map.put("address","atguigu");
map.put("email","abc@163.com");
jedis.hmset("users",map);
List<String> result = jedis.hmget("users", "telphone","email");
for (String element : result) {
System.out.println(element);
}
}
7.4.6. Jedis-API: zset
@Test
public void demoZset(){
Jedis jedis = new Jedis("127.0.0.1", 6379);
jedis.zadd("zset01", 100d, "z3");
jedis.zadd("zset01", 90d, "l4");
jedis.zadd("zset01", 80d, "w5");
jedis.zadd("zset01", 70d, "z6");
List<String> zset = jedis.zrange("zset01", 0, -1); //返回类型???
for (String e : zset) {
System.out.println(e);
}
}