【DL经典回顾】距离度量大汇总(11-落合系数(Ochiai’s coefficient))
文章目录
在深入探讨深度学习(DL)时,我们常常会发现,有些基础概念虽小,却影响深远。距离度量就是这样一个看似简单,实则至关重要的概念。它是机器学习和深度学习中不可或缺的一环,影响着模型的性能和应用的广泛性。在本专栏中,我们将进行一次深度的探索,回顾距离度量的各种方法,并理解它们的重要性和应用。
一、落合系数(Ochiai’s coefficient)
1. 定义和公式
落合系数(Ochiai’s Coefficient),在某些文献中也称为余弦相似度(Cosine Similarity)的一种变体,是一种用于度量两个集合相似度的指标,尤其是在生物学和生态学中用于评估物种多样性。它定义为两个集合交集大小与各自大小的乘积的平方根之比。对于两个集合 (A) 和 (B),落合系数 (OC(A, B)) 可以通过以下公式计算得出: