【DL经典回顾】距离度量大汇总(20-海氏距离(Hellinger distance))
在深入探讨深度学习(DL)时,我们常常会发现,有些基础概念虽小,却影响深远。距离度量就是这样一个看似简单,实则至关重要的概念。它是机器学习和深度学习中不可或缺的一环,影响着模型的性能和应用的广泛性。在本专栏中,我们将进行一次深度的探索,回顾距离度量的各种方法,并理解它们的重要性和应用。
一、海氏距离(Hellinger distance)
1. 定义和公式
海氏距离(Hellinger Distance)是一种衡量两个概率分布差异的度量方法。对于离散概率分布,海氏距离定义为:
H ( P ,