Few-Shot Segmentation Without Meta-Learning: A Good Transductive Inference Is All You Need?阅读笔记

本文提出了一种新的转换推理方法用于小样本分割,无需元学习。通过优化结合标准交叉熵、后验熵和全局KL正则化的损失函数,利用无标签像素信息,提升了模型在小样本任务和新类别上的表现。实验表明,这种方法在特征提取和图像特征转换上的效果优于使用元学习器。
摘要由CSDN通过智能技术生成

首先声明一下,是个刚入门的小菜鸡,大部分里面的内容都带有了自己的理解。如果发现哪里有问题,欢迎指正!

本文引入了一种转换推理,通过优化一个新的损失函数,利用了任务中的无标签像素,这个损失包含三个部分:1.在标签像素上的标准交叉熵;2.在无标签像素上的后验熵;3.基于预测前景区域部分的一个全局KL正则器。本文使用了提取特征的一个简单的线性分类器,拥有与推理方法(inductive inference)可比的计算量,并且能够用于任何基本训练上。
并且本文引入了一个更加实际的域迁移(domain shift)方法。其中的基本的类和新颖的类都是来自不同的数据集。

在这里,在基础训练时,深度分割模型在小样本任务和新型看不见的类别中进行评估。
1.但是片段式训练(episodic training)本身就假设了测试任务在元训练阶段,对于任务具有相似的结构(support shots的数量).
2.基础类与新类都被假设从相同的数据集中进行采样。

以上的假设很容易限制现有的小样本分割方法在实际情况中的应用。而本文舍弃了元学习,在对于特征提取的基础类别的训练过程中,重新想到了一个简单的交叉熵监督。

贡献:
1.提出了对于小样本分割的一个新的transductive方法,从三个方面优化了损失函数。其中包括1)在标签像素上的标准交叉熵;2)在无标签像素上的后验熵;3)基于预测前景区域部分的一个全局KL正则器。
2.没有使用元学习器,但是效果更好
3.不仅仅是在训练与测试数据分布的转换,同时加入了图像特征转换
4.精确的区域分布信息大大改善了结果,当假设这些信息不够实用,不确切的估计可以得到巨大的提升.

小样本分割:使用support图像产生prototype类,然后借助prototype-query比较模型去分割query图像。
为了学习到更好的类表示,其中可选择的方法包括:1.imprint新类别的权重;2.分解整体类别表示为一些part-ware prototypes;3.混合多个prototype,每个对应于不同的图像区域。

3.公式
每一个K-shot任务包含了一个support集 S = { ( x k , y k ) } k =

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值