算法设计与分析——数学基础

数学基础(好难背啊)

同阶函数集合 Θ ( f ( n ) ) = { g ( n ) ∣ ∃ c 1 , c 2 > 0 , n 0 , ∀ n > n 0 , c 1 f ( n ) ≤ g ( n ) ≤ c 2 f ( n ) } \Theta(f(n))=\{g(n)|\exist c_{1},c_{2}>0,n_{0},\forall n>n_{0},c_{1}f(n)\le g(n)\le c_{2}f(n)\} Θ(f(n))={g(n)c1,c2>0,n0,n>n0,c1f(n)g(n)c2f(n)}
低阶函数集合 O ( f ( n ) ) = { g ( n ) ∣ ∃ c > 0 , n 0 , ∀ n > n 0 有 0 ≤ g ( n ) ≤ c f ( n ) } O(f(n))=\{g(n)|\exist c>0,n_{0},\forall n>n_{0}有0\le g(n) \le cf(n)\} O(f(n))={g(n)c>0,n0,n>n00g(n)cf(n)}
高阶函数集合 Ω ( f ( n ) ) = { g ( n ) ∣ ∃ c > 0 , n 0 , ∀ n > n 0 有 0 ≤ c f ( n ) ≤ g ( n ) } \Omega(f(n))=\{g(n)|\exist c>0,n_{0},\forall n>n_{0}有0\le cf(n)\le g(n)\} Ω(f(n))={g(n)c>0,n0,n>n00cf(n)g(n)}
严格低阶函数集合 o ( f ( n ) ) = { g ( n ) ∣ ∀ c > 0 , ∃ n 0 , ∀ n > n 0 有 0 ≤ g ( n ) < c f ( n ) } o(f(n))=\{g(n)|\forall c>0,\exist n_{0},\forall n>n_{0}有0\le g(n) < cf(n)\} o(f(n))={g(n)c>0,n0,n>n00g(n)<cf(n)}
严格高阶函数集合 ω ( f ( n ) ) = { g ( n ) ∣ ∀ c > 0 , ∃ n 0 , ∀ n > n 0 有 0 ≤ c f ( n ) < g ( n ) } \omega(f(n))=\{g(n)|\forall c>0,\exist n_{0},\forall n>n_{0}有0\le cf(n)< g(n)\} ω(f(n))={g(n)c>0,n0,n>n00cf(n)<g(n)}

定理1: f ( n ) = Θ ( g ( n ) )    ⟺    f ( n ) = O ( g ( n ) ) 且 f ( n ) = Ω ( g ( n ) ) f(n)=\Theta(g(n))\iff f(n)=O(g(n))且f(n)=\Omega(g(n)) f(n)=Θ(g(n))f(n)=O(g(n))f(n)=Ω(g(n))
命题1: f ( n ) = o ( g ( n ) )    ⟺    lim ⁡ n → ∞ f ( n ) g ( n ) = 0 f(n)=o(g(n))\iff \lim_{n \to \infin}\frac{f(n)}{g(n)}=0 f(n)=o(g(n))limng(n)f(n)=0
命题2: f ( n ) = o ( g ( n ) )    ⟺    g ( n ) = ω ( f ( n ) ) f(n)=o(g(n))\iff g(n)=\omega(f(n)) f(n)=o(g(n))g(n)=ω(f(n))
命题3: g ( n ) = ω ( f ( n ) )    ⟺    lim ⁡ n → ∞ g ( n ) f ( n ) = 0 g(n)=\omega(f(n))\iff \lim_{n \to \infin}\frac{g(n)}{f(n)}=0 g(n)=ω(f(n))limnf(n)g(n)=0

传递性:
f ( n ) = Θ ( g ( n ) ) ∧ g ( n ) = Θ ( h ( n ) ) ⇒ f ( n ) = Θ ( h ( n ) ) f(n)=\Theta(g(n))\wedge g(n)=\Theta(h(n))\Rightarrow f(n)=\Theta(h(n)) f(n)=Θ(g(n))g(n)=Θ(h(n))f(n)=Θ(h(n))
f ( n ) = O ( g ( n ) ) ∧ g ( n ) = O ( h ( n ) ) ⇒ f ( n ) = O ( h ( n ) ) f(n)=O(g(n))\wedge g(n)=O(h(n))\Rightarrow f(n)=O(h(n)) f(n)=O(g(n))g(n)=O(h(n))f(n)=O(h(n))
f ( n ) = Ω ( g ( n ) ) ∧ g ( n ) = Ω ( h ( n ) ) ⇒ f ( n ) = Ω ( h ( n ) ) f(n)=\Omega(g(n))\wedge g(n)=\Omega(h(n))\Rightarrow f(n)=\Omega(h(n)) f(n)=Ω(g(n))g(n)=Ω(h(n))f(n)=Ω(h(n))
f ( n ) = o ( g ( n ) ) ∧ g ( n ) = o ( h ( n ) ) ⇒ f ( n ) = o ( h ( n ) ) f(n)=o(g(n))\wedge g(n)=o(h(n))\Rightarrow f(n)=o(h(n)) f(n)=o(g(n))g(n)=o(h(n))f(n)=o(h(n))
f ( n ) = ω ( g ( n ) ) ∧ g ( n ) = ω ( h ( n ) ) ⇒ f ( n ) = ω ( h ( n ) ) f(n)=\omega(g(n))\wedge g(n)=\omega(h(n))\Rightarrow f(n)=\omega(h(n)) f(n)=ω(g(n))g(n)=ω(h(n))f(n)=ω(h(n))
自反性:
f ( n ) = Θ ( f ( n ) ) f(n)=\Theta(f(n)) f(n)=Θ(f(n))
f ( n ) = O ( f ( n ) ) f(n)=O(f(n)) f(n)=O(f(n))
f ( n ) = Ω ( f ( n ) ) f(n)=\Omega(f(n)) f(n)=Ω(f(n))
对称性:
f ( n ) = Θ ( g ( n ) )    ⟺    g ( n ) = Θ ( f ( n ) ) f(n)=\Theta(g(n))\iff g(n)=\Theta(f(n)) f(n)=Θ(g(n))g(n)=Θ(f(n))
反对称性:
f ( n ) = O ( g ( n ) )    ⟺    g ( n ) = Ω ( f ( n ) ) f(n)=O(g(n))\iff g(n)=\Omega(f(n)) f(n)=O(g(n))g(n)=Ω(f(n))
f ( n ) = o ( g ( n ) )    ⟺    g ( n ) = ω ( f ( n ) ) f(n)=o(g(n))\iff g(n)=\omega(f(n)) f(n)=o(g(n))g(n)=ω(f(n))

求解时间复杂性(思想贼简单,应用就不咋会了)

迭代方法:把方程转化成一个和式,然后用估计和的方法求解
替代方法:先猜测方程的解,然后用数学归纳法证明(基本上用不到,能猜出来的还用你算?)
Master方法:求解型为 T ( n ) = a T ( n / b ) + f ( n ) T(n)=aT(n/b)+f(n) T(n)=aT(n/b)+f(n)的递归方程

用迭代法解方程 T ( n ) = T ( 9 n / 10 ) + n T(n)=T(9n/10)+n T(n)T(9n/10)+n
T ( n ) = T ( 9 n / 10 ) + n T(n) = T(9n/10)+n T(n)=T(9n/10)+n
= T ( 9 2 n / 1 0 2 ) + n + n =T(9^2n/10^2)+n+n =T(92n/102)+n+n
= T ( 9 3 n / 1 0 3 ) + n + n + n =T(9^3n/10^3)+n+n+n =T(93n/103)+n+n+n
= … = … =
= T ( 9 k n / 1 0 k ) + k n , n = ( 10 / 9 ) k = T(9^kn/10^k)+kn , n=(10/9)^k =T(9kn/10k)+kn,n=(10/9)k
= T ( 1 ) + k n = T(1)+kn =T(1)+kn
= T ( 1 ) + n l o g ( 10 / 9 ) n = T(1)+nlog(10/9)n =T(1)+nlog(10/9)n
= Θ ( n log ⁡ 10 / 9 n ) =\Theta(n\log_{10/9}n) =Θ(nlog10/9n)

解方程 T ( n ) = 9 T ( n / 3 ) + n T(n)=9T(n/3)+n T(n)=9T(n/3)+n
a = 9 , b = 3 , n log ⁡ b a = n 2 a=9,b=3,n^{\log_{b}{a}}=n^2 a=9,b=3,nlogba=n2
因 为 f ( n ) = n = O ( n log ⁡ b a − ϵ ) , ϵ = 1 因为f(n)=n=O(n^{\log_{b}{a}}-\epsilon),\epsilon=1 f(n)=n=O(nlogbaϵ),ϵ=1
T ( n ) = Θ ( n log ⁡ b a ) = Θ ( n 2 ) T(n)=\Theta(n^{\log_{b}{a}})=\Theta(n^2) T(n)=Θ(nlogba)=Θ(n2)

算法设计与分析第一次作业题

1.用伪代码写出求整数最大公因子的欧几里得算法。
递归法:
( 1 ) i f a = 0 (1) if a=0 (1)ifa=0 t h e n then then
( 2 ) r e t u r n (2)\quad return (2)return b b b
( 3 ) i f b = 0 (3) if b=0 (3)ifb=0 t h e n then then
( 4 ) r e t u r n (4)\quad return (4)return a a a
( 5 ) r e t u r n E u c l i d ( b , a % b ) (5) return Euclid(b,a\%b) (5)returnEuclid(b,a%b)
循环法:
( 1 ) w h i l e (1)while (1)while b ! = 0 b!=0 b!=0
( 2 ) c = a % b (2)\quad \quad c=a\%b (2)c=a%b
( 3 ) a = b (3)\quad\quad a=b (3)a=b
( 4 ) b = c (4)\quad\quad b=c (4)b=c
( 5 ) r e t u r n a (5)return\quad a (5)returna

2.证明或证否: f ( n ) + o ( f ( n ) ) = Θ ( f ( n ) ) f(n)+o(f(n))=\Theta(f(n)) f(n)+o(f(n))=Θ(f(n))
证明: ∵ ∀ g ( n ) ∈ o ( f ( n ) ) , ∀ c > 0 , ∃ n 0 , ∀ n > n 0 , 0 ≤ g ( n ) < c f ( n ) \because \forall g(n)\in o(f(n)),\forall c>0,\exist n_{0},\forall n>n_{0},0\le g(n)<cf(n) g(n)o(f(n)),c>0,n0,n>n0,0g(n)<cf(n)
∴ ∀ g ( n ) ∈ o ( f ( n ) ) , ∀ c > 0 , ∃ n 0 , ∀ n > n 0 , f ( n ) ≤ g ( n ) + f ( n ) < ( c + 1 ) f ( n ) \therefore \forall g(n)\in o(f(n)),\forall c>0,\exist n_{0},\forall n>n_{0},f(n)\le g(n)+f(n)<(c+1)f(n) g(n)o(f(n)),c>0,n0,n>n0,f(n)g(n)+f(n)<(c+1)f(n)
令 c 1 = 1 , c 2 = c + 1 令c_{1}=1,c_{2}=c+1 c1=1,c2=c+1
则 ∀ g ( n ) ∈ o ( f ( n ) ) , ∃ c 1 , c 2 , n 0 , ∀ n > n 0 , c 1 f ( n ) ≤ g ( n ) + f ( n ) < c 2 f ( n ) 则\forall g(n)\in o(f(n)),\exist c_{1},c_{2},n_{0},\forall n>n_{0},c_{1}f(n)\le g(n)+f(n)<c_{2}f(n) g(n)o(f(n)),c1,c2,n0,n>n0,c1f(n)g(n)+f(n)<c2f(n)
∴ f ( n ) + g ( n ) = f ( n ) + o ( f ( n ) ) = Θ ( f ( n ) ) \therefore f(n)+g(n)=f(n)+o(f(n))=\Theta(f(n)) f(n)+g(n)=f(n)+o(f(n))=Θ(f(n))

3.证明: Θ ( f ( x ) ) + O ( g ( x ) ) = O ( m a x ( f ( x ) , g ( x ) ) ) \Theta(f(x))+O(g(x))=O(max(f(x),g(x))) Θ(f(x))+O(g(x))=O(max(f(x),g(x)))
证明: f 0 ( x ) ∈ Θ ( f ( x ) ) , ∃ c 1 , c 2 > 0 , x 0 , ∀ x > x 0 , c 1 f ( x ) ≤ f 0 ( x ) ≤ c 2 f ( x ) f_{0}(x)\in \Theta(f(x)),\exist c_{1},c_{2}>0,x_{0},\forall x>x_{0},c_{1}f(x)\le f_{0}(x)\le c_{2}f(x) f0(x)Θ(f(x)),c1,c2>0,x0,x>x0,c1f(x)f0(x)c2f(x)
g 0 ( x ) ∈ g ( x ) , ∃ c > 0 , x 1 , ∀ x > x 1 有 0 ≤ g 0 ( x ) ≤ c g ( x ) g_{0}(x) \in g(x), \exist c>0,x_{1},\forall x>x_{1}有0\le g_{0}(x) \le cg(x) g0(x)g(x),c>0,x1,x>x10g0(x)cg(x)
∴ ∃ c 1 , c 2 , c > 0 , x 2 = m a x ( x 0 , x 1 ) , ∀ x > x 2 , 0 ≤ c 1 f ( x ) ≤ f 0 ( x ) + g 0 ( x ) ≤ c 2 f ( x ) + c g ( x ) \therefore \exist c_{1},c_{2},c>0,x_{2}=max(x_{0},x_{1}),\forall x>x_{2},0\le c_{1}f(x)\le f_{0}(x)+g_{0}(x)\le c_{2}f(x)+cg(x) c1,c2,c>0,x2=max(x0,x1),x>x2,0c1f(x)f0(x)+g0(x)c2f(x)+cg(x)
令 c 3 = m a x ( c , c 2 ) 令c_{3}=max(c,c_{2}) c3=max(c,c2)
则 0 ≤ f 0 ( x ) + g 0 ( x ) ≤ 2 c 3 m a x ( f ( x ) + g ( x ) ) 则0\le f_{0}(x)+g_{0}(x)\le 2c_{3}max(f(x)+g(x)) 0f0(x)+g0(x)2c3max(f(x)+g(x))
∴ Θ ( f ( x ) ) + O ( g ( x ) ) = O ( m a x ( f ( x ) , g ( x ) ) ) \therefore \Theta(f(x))+O(g(x))=O(max(f(x),g(x))) Θ(f(x))+O(g(x))=O(max(f(x),g(x)))

4.证明或给出反例: Θ ( f ( n ) ) ∧ o ( f ( n ) ) = ∅ \Theta(f(n))\land o(f(n))=\emptyset Θ(f(n))o(f(n))=
证明: f 0 ( x ) ∈ Θ ( f ( x ) ) , ∃ c 1 , c 2 > 0 , n 0 , ∀ n > n 0 , c 1 f ( n ) ≤ f 0 ( n ) ≤ c 2 f ( n ) f_{0}(x)\in \Theta(f(x)),\exist c_{1},c_{2}>0,n_{0},\forall n>n_{0},c_{1}f(n)\le f_{0}(n)\le c_{2}f(n) f0(x)Θ(f(x)),c1,c2>0,n0,n>n0,c1f(n)f0(n)c2f(n)
假设 f 0 ( n ) ∈ o ( f ( n ) ) f_{0}(n)\in o(f(n)) f0(n)o(f(n))
∀ c > 0 , ∃ n 1 , ∀ n > n 1 有 0 ≤ f 0 ( n ) < c f ( n ) \forall c>0,\exist n_{1},\forall n>n_{1}有0\le f_{0}(n) < cf(n) c>0,n1,n>n10f0(n)<cf(n)
这与 c 1 f ( n ) ≤ 0 ( f ( n ) ) c_{1}f(n)\le 0(f(n)) c1f(n)0(f(n))矛盾
所以 f 0 ( n ) ∉ 0 ( f ( n ) ) f_{0}(n)\notin 0(f(n)) f0(n)/0(f(n))
Θ ( f ( n ) ) ∧ o ( f ( n ) ) = ∅ \Theta(f(n))\land o(f(n))=\emptyset Θ(f(n))o(f(n))=

5.证明:设 k k k是任意常数正整数,则 l o g k n = o ( n ) log^kn=o(n) logkn=o(n)
证明: lim ⁡ n → ∞ l o g k n n = lim ⁡ n → ∞ ( k ) l o g k − 1 n n = . . . = lim ⁡ n → ∞ k ! n = 0 \lim_{n \to \infin}\frac{log^kn}{n}=\lim_{n \to \infin}\frac{(k)log^{k-1}n}{n}=...=\lim_{n \to \infin}\frac{k!}{n}=0 limnnlogkn=limnn(k)logk1n=...=limnnk!=0
所以 l o g k n = o ( n ) log^kn=o(n) logkn=o(n)

6.证明: l o g n ! = Θ ( n l o g n ) logn!=\Theta(nlogn) logn!=Θ(nlogn)
先证: l o g n ! = O ( n l o g n ) logn!=O(nlogn) logn!=O(nlogn)
l o g n ! = ∑ i = 1 n l o g ( i ) ≤ ∑ i = 1 n n = n l o g n = O ( n l o g n ) logn!=\sum_{i=1}^n log(i)\le \sum_{i=1}^n n=nlogn=O(nlogn) logn!=i=1nlog(i)i=1nn=nlogn=O(nlogn)
再证: l o g n ! = Ω ( n l o g n ) logn!=\Omega(nlogn) logn!=Ω(nlogn)
∵ n ! ≥ ( n / 2 ) n / 2 \because n!\ge (n/2)^{n/2} n!(n/2)n/2
∴ l o g ( n ! ) ≥ l o g ( ( n / 2 ) n / 2 ) = ( n / 2 ) l o g ( n / 2 ) = ( n / 2 ) l o g ( n ) − ( n / 2 ) l o g ( 2 ) \therefore log(n!)\ge log((n/2)^{n/2})=(n/2)log(n/2)=(n/2)log(n)-(n/2)log(2) log(n!)log((n/2)n/2)=(n/2)log(n/2)=(n/2)log(n)(n/2)log(2)
当 n ≥ 4 时 , ( n / 2 ) l o g ( 2 ) = ( n / 4 ) l o g ( 4 ) ≤ ( n / 4 ) l o g ( n ) 当n\ge 4时,(n/2)log(2)=(n/4)log(4)\le (n/4)log(n) n4(n/2)log(2)=(n/4)log(4)(n/4)log(n)
∴ l o g ( n ! ) ≥ ( n / 2 ) l o g ( n ) − ( n / 4 ) l o g ( n ) = ( n / 4 ) l o g ( n ) = Ω ( n l o g n ) \therefore log(n!)\ge (n/2)log(n)-(n/4)log(n)=(n/4)log(n)=\Omega(nlogn) log(n!)(n/2)log(n)(n/4)log(n)=(n/4)log(n)=Ω(nlogn)
综 上 l o g n ! = Θ ( n l o g n ) 综上logn!=\Theta(nlogn) logn!=Θ(nlogn)

7.解方程: T ( n ) = 6 T ( n / 3 ) + l o g n T(n)=6T(n/3)+logn T(n)=6T(n/3)+logn
解: 令 n = 2 m , 则 令n=2^m,则 n=2m,
T ( 2 m ) = 6 T ( 2 m / 3 ) + m T(2^m)=6T(2^m/3)+m T(2m)=6T(2m/3)+m
令 T ( 2 m ) = S ( m ) , 则 令T(2^m)=S(m),则 T(2m)=S(m),
S ( m ) = 6 S ( m / 3 ) + m S(m)=6S(m/3)+m S(m)=6S(m/3)+m
S ( m ) = 6 S ( m / 3 ) + m = 36 S ( m / 9 ) + 6 m / 3 + m = . . . = 6 k S ( m / 3 k ) + m / 3 k − 1 + . . . + m = ( 令 m = 3 k ) 6 k S ( 1 ) + 6 k − 1 m / 3 k − 1 + . . . + m = 6 k + 3 ∗ 6 k − 1 + . . . + 3 k = Θ ( m l o g 3 m ) S(m)=6S(m/3)+m=36S(m/9)+6m/3+m=...=6^kS(m/3^k)+m/3^{k-1}+...+m=(令m=3^k)6^kS(1)+6^{k-1}m/3^{k-1}+...+m=6^k+3*6^{k-1}+...+3^k=\Theta(mlog_{3}m) S(m)=6S(m/3)+m=36S(m/9)+6m/3+m=...=6kS(m/3k)+m/3k1+...+m=(m=3k)6kS(1)+6k1m/3k1+...+m=6k+36k1+...+3k=Θ(mlog3m)
T ( n ) = Θ ( l o g 3 m l o g l o g 3 m ) T(n)=\Theta(log_{3}mloglog_{3}m) T(n)=Θ(log3mloglog3m)

8.解方程 T ( n ) = 3 T ( n / 3 + 5 ) + n / 2 T(n)=3T(n/3+5)+n/2 T(n)=3T(n/3+5)+n/2
解: 令 n = m + 15 / 2 , 则 令n=m+15/2,则 n=m+15/2
T ( m + 15 / 2 ) = 3 T ( m / 3 + 15 / 2 ) + m / 2 + 15 / 4 T(m+15/2)=3T(m/3+15/2)+m/2+15/4 T(m+15/2)=3T(m/3+15/2)+m/2+15/4
令 T ( m + 15 / 2 ) = S ( m ) , 则 令T(m+15/2)=S(m),则 T(m+15/2)=S(m)
S ( m ) = 3 S ( m / 3 ) + m / 2 + 15 / 4 S(m)=3S(m/3)+m/2+15/4 S(m)=3S(m/3)+m/2+15/4
S ( m ) = Θ ( m l o g m ) S(m)=\Theta(mlogm) S(m)=Θ(mlogm)
T ( n ) = Θ ( n l o g n ) T(n)=\Theta(nlogn) T(n)=Θ(nlogn)

9.解方程: T ( n ) = T ( ⌈ n / 2 ⌉ ) + 1 T(n)=T(⌈n/2⌉)+1 T(n)=T(n/2)+1
解: T ( n ) = T ( ⌈ n / 2 ⌉ ) + 1 = T ( ⌈ n / 4 ⌉ ) + 1 + 1 = T ( ⌈ n / 8 ⌉ ) + 1 + 1 + 1 = T ( ⌈ n / 2 i ⌉ ) + i T(n)=T(⌈n/2⌉)+1=T(⌈n/4⌉)+1+1=T(⌈n/8⌉)+1+1+1=T(⌈n/2^i⌉)+i T(n)=T(n/2)+1=T(n/4)+1+1=T(n/8)+1+1+1=T(n/2i)+i
令 n / 2 i = 1 , 得 i = l o g n 令n/2^i=1,得i=logn n/2i=1,i=logn
则 原 式 = T ( 1 ) + l o g n = O ( l o g n ) 则原式=T(1)+logn=O(logn) =T(1)+logn=O(logn)

10.解方程: T ( n ) = T ( ⌊ n / 2 ⌋ ) + n 3 T(n)=T(⌊n/2⌋)+n^3 T(n)=T(n/2)+n3
解: T ( n ) = T ( ⌊ n / 2 ⌋ ) + n 3 = T ( ⌊ n / 2 2 ⌋ ) + n 3 + ⌊ n / 2 ⌋ 3 = T ( ⌊ n / 2 i ⌋ ) + n 3 + . . . + ⌊ n / 2 i ⌋ 3 T(n)=T(⌊n/2⌋)+n^3=T(⌊n/2^2⌋)+n^3+⌊n/2⌋^3=T(⌊n/2^i⌋)+n^3+...+⌊n/2^i⌋^3 T(n)=T(n/2)+n3=T(n/22)+n3+n/23=T(n/2i)+n3+...+n/2i3
令 n / 2 i = 1 , 则 i = l o g 2 n 令n/2^i=1,则i=log_{2}n n/2i=1i=log2n
∴ T ( n ) ≤ ∑ i = 0 l o g 2 n ( n / 2 i ) 3 + T ( 1 ) ≤ n 3 ∑ i = 0 ∞ ( 1 / 8 ) i = O ( n 3 ) \therefore T(n)\le \sum_{i=0}^{log_{2}n}(n/2^i)^3+T(1)\le n^3\sum_{i=0}^{\infin}(1/8)^i=O(n^3) T(n)i=0log2n(n/2i)3+T(1)n3i=0(1/8)i=O(n3)

11.证明或证否: 如 果 f ( n ) = O ( g ( n ) ) , 那 么 2 f ( n ) = O ( 2 g ( n ) ) 如果f(n)=O(g(n)),那么2^{f(n)}=O(2^{g(n)}) f(n)=O(g(n))2f(n)=O(2g(n))
否证: 令 f ( n ) = 3 n , g ( n ) = n , 则 f ( n ) = O ( g ( n ) ) , 但 是 2 f ( n ) ≠ O ( 2 g ( n ) ) 令f(n)=3n,g(n)=n,则f(n)=O(g(n)),但是2^{f(n)}\neq O(2^{g(n)}) f(n)=3n,g(n)=n,f(n)=O(g(n))2f(n)=O(2g(n))

参考:哈工大算法设计与分析PPT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值