参考引用
常用搜索算法
1. 绪论
- 搜索算法用于在数据结构(数组、链表、树或图)中搜索一个或一组满足特定条件的元素,分为以下两类
- 1. 暴力搜索:通过遍历数据结构来定位目标元素,例如数组、链表、树和图的遍历等
- 1.1 线性搜索:适用于数组和链表等线性数据结构。它从数据结构的一端开始,逐个访问元素,直到找到目标元素或到达另一端仍没有找到目标元素为止
- 1.2 广度优先搜索 和 1.3 深度优先搜索:是图和树的两种遍历策略,广度优先搜索从初始节点开始逐层搜索,由近及远地访问各个节点;深度优先搜索从初始节点开始,沿着一条路径走到头,再回溯并尝试其他路径,直到遍历完整个数据结构
暴力搜索的优点是简单且通用性好,无须对数据做预处理和借助额外的数据结构,但在数据量较大的情况下性能较差
- 2. 自适应搜索:利用数据组织结构或数据包含的先验信息实现高效元素查找,例如二分查找、哈希查找和二叉搜索树查找等
- 2.1 二分查找:利用数据的有序性实现高效查找,仅适用于数组
- 2.2 哈希查找:利用哈希表将搜索数据和目标数据建立为键值对映射,从而实现查询操作
- 2.3 树查找:在特定的树结构(例如二叉搜索树)中,基于比较节点值来快速排除节点,从而定位目标元素
自适应搜索效率高,但往往需要对数据进行预处理:例如,二分查找需要预先对数组进行排序,哈希查找和树查找都需要借助额外的数据结构,维护这些数据结构也需要额外的时间和空间开销
- 1. 暴力搜索:通过遍历数据结构来定位目标元素,例如数组、链表、树和图的遍历等
- 搜索算法选取原则
- 线性搜索
- 适用于体量较小的数据,此情况下时间复杂度对效率影响较小。
- 适用于数据更新频率较高的场景,因为该方法不需要对数据进行任何额外维护
- 二分查找
- 适用于大数据量的情况,效率表现稳定(数据量不能过大,因为存储数组需要连续的内存空间)
- 不适用于高频增删数据的场景,因为维护有序数组的开销较大
- 哈希查找
- 适合对查询性能要求很高的场景
- 不适合需要有序数据或范围查找的场景,因为哈希表无法维护数据的有序性
- 不适合数据量过大的情况,因为哈希表需要额外空间来最大程度地减少冲突
- 对哈希函数和哈希冲突处理策略的依赖性较高,具有较大的性能劣化风险
- 树查找
- 适用于海量数据,因为树节点在内存中是分散存储的
- 适合需要维护有序数据或范围查找的场景
- 线性搜索
2. 二分查找
2.1 算法原理与流程
- 二分查找是一种基于分治策略的高效搜索算法,它利用数据的有序性,每轮缩小一半搜索范围,直至找到目标元素或搜索区间为空为止
- 给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1
- 使用二分法的前提条件
- 数组为有序数组
- 数组中无重复元素
- 二分法核心思想
- 在二分查找的过程中,保持不变量,即:在 while 寻找每一次边界的处理都要坚持根据区间的定义来操作,这就是循环不变量规则
- 区间的定义一般为两种,左闭右闭即 [left, right],或者左闭右开即 [left, right)
2.2 算法实现
- 时间复杂度 O ( l o g n ) O(logn) O(logn):在二分循环中,区间每轮缩小一半,因此循环次数为 log 2 n \log_{2}n log2n
- 空间复杂度 O ( 1 ) O(1) O(1):指针 i i i 和 j j j 使用常数大小空间
#include <iostream>
#include <vector>
int binarySearch(std::vector<int> &nums, int target) {
int left = 0;
int right = nums.size() - 1; // 定义t arget 在左闭右闭的区间里,[left, right]
while (left <= right) { // 当 left==right,区间 [left, right] 依然有效,所以用 <=
int middle = left + ((right - left) / 2); // 防止溢出 等同于 (left + right)/2
if (nums[middle] > target) {
right = middle - 1; // target 在左区间,所以 [left, middle - 1]
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,所以[middle + 1, right]
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值
return -1;
}
int main(int argc, char *argv[]) {
std::vector<int> nums{ 1, 2, 3, 4, 7, 9, 10 };
int target = 2;
int result = binarySearch(nums, target);
std::cout << result << std::endl;
return 0;
}
二分查找的优缺点
- 优点:(1)时间效率高,当数据大小 n = 2 20 n=2^{20} n=220 时,线性查找需要 2 20 = 1048576 2^{20}=1048576 220=1048576 轮循环,而二分查找仅需 log 2 2 20 = 20 \log_{2}2^{20}=20 log2220=20 轮循环;(2)相较于需要借助额外空间的搜索算法(例如哈希查找)更节省空间
- 缺点:(1)二分查找仅适用于有序数据,若输入数据无序,为使用二分查找而专门进行排序,得不偿失;(2)仅适用于数组,二分查找需要跳跃式(非连续地)访问元素,而在链表中执行跳跃式访问的效率较低;(3)小数据量下,线性查找性能更佳
3. 线性搜索与哈希查找
- 给定一个整数数组 nums 和一个目标元素 target ,请在数组中搜索 “和” 为 target 的两个元素,并返回它们的数组索引,返回任意一个解即可
3.1 线性搜索:以时间换空间
- 考虑直接遍历所有可能的组合,开启一个两层循环,在每轮中判断两个整数的和是否为 target,若是,则返回它们的索引
// 时间复杂度为 O(n^2)
// 空间复杂度为 O(1)
#include <iostream>
#include <vector>
std::vector<int> twoSumBruteForce(std::vector<int> &nums, int target) {
int size = nums.size();
// 两层循环,时间复杂度为 O(n^2)
for (int i = 0; i < size - 1; i++) {
for (int j = i + 1; j < size; j++) {
if (nums[i] + nums[j] == target)
return {i, j};
}
}
return {};
}
int main() {
std::vector<int> nums = {2, 7, 11, 15};
int target = 9;
std::vector<int> result = twoSumBruteForce(nums, target);
if (result.size() == 2) {
std::cout << "Indices: " << result[0] << ", " << result[1] << std::endl;
} else {
std::cout << "No two elements in the vector sum up to the target." << std::endl;
}
return 0;
}
3.2 哈希查找:以空间换时间
- 考虑借助一个哈希表,键值对分别为数组元素和元素索引,循环遍历数组,每轮执行下图所示的步骤
- 判断数字 target - nums[i] 是否在哈希表中,若是,则直接返回这两个元素的索引
- 将键值对 nums[i] 和索引 i 添加进哈希表
// 时间复杂度由 O(n^2) 降为 O(n),大幅提升运行效率
// 空间复杂度由 O(1) 升为 O(n),因为需要维护一个额外的哈希表
#include <iostream>
#include <vector>
#include <unordered_map>
std::vector<int> twoSumHashTable(std::vector<int> &nums, int target) {
int size = nums.size();
// 辅助哈希表,空间复杂度为 O(n)
std::unordered_map<int, int> dic;
// 单层循环,时间复杂度为 O(n)
for (int i = 0; i < size; i++) {
if (dic.find(target - nums[i]) != dic.end()) {
return {dic[target - nums[i]], i};
}
dic.emplace(nums[i], i);
}
return {};
}
int main() {
std::vector<int> nums = {2, 7, 11, 15};
int target = 9;
std::vector<int> result = twoSumHashTable(nums, target);
if (result.size() == 2) {
std::cout << "Indices: " << result[0] << ", " << result[1] << std::endl;
} else {
std::cout << "No two elements in the vector sum up to the target." << std::endl;
}
return 0;
}