C++秋招必知必会(常用搜索算法)

本文详细介绍了搜索算法,包括暴力搜索如线性搜索、广度优先搜索和深度优先搜索,以及自适应搜索如二分查找、哈希查找和树查找。讨论了各种搜索算法的特点、适用场景和效率,以及线性搜索与哈希查找在解决特定问题上的对比。
摘要由CSDN通过智能技术生成

参考引用

常用搜索算法

1. 绪论

  • 搜索算法用于在数据结构(数组、链表、树或图)中搜索一个或一组满足特定条件的元素,分为以下两类
    • 1. 暴力搜索:通过遍历数据结构来定位目标元素,例如数组、链表、树和图的遍历等
      • 1.1 线性搜索:适用于数组和链表等线性数据结构。它从数据结构的一端开始,逐个访问元素,直到找到目标元素或到达另一端仍没有找到目标元素为止
      • 1.2 广度优先搜索1.3 深度优先搜索:是图和树的两种遍历策略,广度优先搜索从初始节点开始逐层搜索,由近及远地访问各个节点;深度优先搜索从初始节点开始,沿着一条路径走到头,再回溯并尝试其他路径,直到遍历完整个数据结构

      暴力搜索的优点是简单且通用性好,无须对数据做预处理和借助额外的数据结构,但在数据量较大的情况下性能较差

    • 2. 自适应搜索:利用数据组织结构或数据包含的先验信息实现高效元素查找,例如二分查找、哈希查找和二叉搜索树查找等
      • 2.1 二分查找:利用数据的有序性实现高效查找,仅适用于数组
      • 2.2 哈希查找:利用哈希表将搜索数据和目标数据建立为键值对映射,从而实现查询操作
      • 2.3 树查找:在特定的树结构(例如二叉搜索树)中,基于比较节点值来快速排除节点,从而定位目标元素

      自适应搜索效率高,但往往需要对数据进行预处理:例如,二分查找需要预先对数组进行排序,哈希查找和树查找都需要借助额外的数据结构,维护这些数据结构也需要额外的时间和空间开销

在这里插入图片描述

在这里插入图片描述

  • 搜索算法选取原则
    • 线性搜索
      • 适用于体量较小的数据,此情况下时间复杂度对效率影响较小。
      • 适用于数据更新频率较高的场景,因为该方法不需要对数据进行任何额外维护
    • 二分查找
      • 适用于大数据量的情况,效率表现稳定(数据量不能过大,因为存储数组需要连续的内存空间)
      • 不适用于高频增删数据的场景,因为维护有序数组的开销较大
    • 哈希查找
      • 适合对查询性能要求很高的场景
      • 不适合需要有序数据或范围查找的场景,因为哈希表无法维护数据的有序性
      • 不适合数据量过大的情况,因为哈希表需要额外空间来最大程度地减少冲突
      • 对哈希函数和哈希冲突处理策略的依赖性较高,具有较大的性能劣化风险
    • 树查找
      • 适用于海量数据,因为树节点在内存中是分散存储的
      • 适合需要维护有序数据或范围查找的场景

2. 二分查找

2.1 算法原理与流程
  • 二分查找是一种基于分治策略的高效搜索算法,它利用数据的有序性,每轮缩小一半搜索范围,直至找到目标元素或搜索区间为空为止
  • 给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1
  • 使用二分法的前提条件
    • 数组为有序数组
    • 数组中无重复元素
  • 二分法核心思想
    • 在二分查找的过程中,保持不变量,即:在 while 寻找每一次边界的处理都要坚持根据区间的定义来操作,这就是循环不变量规则
    • 区间的定义一般为两种,左闭右闭即 [left, right],或者左闭右开即 [left, right)
      在这里插入图片描述
2.2 算法实现
  • 时间复杂度 O ( l o g n ) O(logn) O(logn):在二分循环中,区间每轮缩小一半,因此循环次数为 log ⁡ 2 n \log_{2}n log2n
  • 空间复杂度 O ( 1 ) O(1) O(1):指针 i i i j j j 使用常数大小空间
#include <iostream>
#include <vector>

int binarySearch(std::vector<int> &nums, int target) {
    int left = 0;
    int right = nums.size() - 1; // 定义t arget 在左闭右闭的区间里,[left, right]
    while (left <= right) { // 当 left==right,区间 [left, right] 依然有效,所以用 <=
        int middle = left + ((right - left) / 2); // 防止溢出 等同于 (left + right)/2
        if (nums[middle] > target) {
            right = middle - 1; // target 在左区间,所以 [left, middle - 1]
        } else if (nums[middle] < target) {
            left = middle + 1; // target 在右区间,所以[middle + 1, right]
        } else { // nums[middle] == target
            return middle; // 数组中找到目标值,直接返回下标
        }
    }
    // 未找到目标值
    return -1;
}

int main(int argc, char *argv[]) {
    std::vector<int> nums{ 1, 2, 3, 4, 7, 9, 10 };
    int target = 2;

    int result = binarySearch(nums, target);
    std::cout << result << std::endl;

    return 0;
}

二分查找的优缺点

  • 优点:(1)时间效率高,当数据大小 n = 2 20 n=2^{20} n=220 时,线性查找需要 2 20 = 1048576 2^{20}=1048576 220=1048576 轮循环,而二分查找仅需 log ⁡ 2 2 20 = 20 \log_{2}2^{20}=20 log2220=20 轮循环;(2)相较于需要借助额外空间的搜索算法(例如哈希查找)更节省空间
  • 缺点:(1)二分查找仅适用于有序数据,若输入数据无序,为使用二分查找而专门进行排序,得不偿失;(2)仅适用于数组,二分查找需要跳跃式(非连续地)访问元素,而在链表中执行跳跃式访问的效率较低;(3)小数据量下,线性查找性能更佳

3. 线性搜索与哈希查找

  • 给定一个整数数组 nums 和一个目标元素 target ,请在数组中搜索 “和” 为 target 的两个元素,并返回它们的数组索引,返回任意一个解即可
3.1 线性搜索:以时间换空间
  • 考虑直接遍历所有可能的组合,开启一个两层循环,在每轮中判断两个整数的和是否为 target,若是,则返回它们的索引
    在这里插入图片描述
// 时间复杂度为 O(n^2)
// 空间复杂度为 O(1)
#include <iostream>
#include <vector>

std::vector<int> twoSumBruteForce(std::vector<int> &nums, int target) {
    int size = nums.size();
    // 两层循环,时间复杂度为 O(n^2)
    for (int i = 0; i < size - 1; i++) {
        for (int j = i + 1; j < size; j++) {
            if (nums[i] + nums[j] == target)
                return {i, j};
        }
    }
    return {};
}

int main() {
    std::vector<int> nums = {2, 7, 11, 15};
    int target = 9;
    
    std::vector<int> result = twoSumBruteForce(nums, target);
    
    if (result.size() == 2) {
        std::cout << "Indices: " << result[0] << ", " << result[1] << std::endl;
    } else {
        std::cout << "No two elements in the vector sum up to the target." << std::endl;
    }
    
    return 0;
}
3.2 哈希查找:以空间换时间
  • 考虑借助一个哈希表,键值对分别为数组元素和元素索引,循环遍历数组,每轮执行下图所示的步骤
    • 判断数字 target - nums[i] 是否在哈希表中,若是,则直接返回这两个元素的索引
    • 将键值对 nums[i] 和索引 i 添加进哈希表
      在这里插入图片描述
// 时间复杂度由 O(n^2) 降为 O(n),大幅提升运行效率
// 空间复杂度由 O(1) 升为 O(n),因为需要维护一个额外的哈希表
#include <iostream>
#include <vector>
#include <unordered_map>

std::vector<int> twoSumHashTable(std::vector<int> &nums, int target) {
    int size = nums.size();
    // 辅助哈希表,空间复杂度为 O(n)
    std::unordered_map<int, int> dic;
    // 单层循环,时间复杂度为 O(n)
    for (int i = 0; i < size; i++) {
        if (dic.find(target - nums[i]) != dic.end()) {
            return {dic[target - nums[i]], i};
        }
        dic.emplace(nums[i], i);
    }
    return {};
}

int main() {
    std::vector<int> nums = {2, 7, 11, 15};
    int target = 9;
    
    std::vector<int> result = twoSumHashTable(nums, target);
    
    if (result.size() == 2) {
        std::cout << "Indices: " << result[0] << ", " << result[1] << std::endl;
    } else {
        std::cout << "No two elements in the vector sum up to the target." << std::endl;
    }
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值