MATLAB中外部数据读取并写入元胞数组的方法与步骤

MATLAB中外部数据读取并写入元胞数组的方法与步骤

由于最近做时序分类问题用到了LSTM,则不得不接触一下元胞数组这个概念了…

引用

  1. matlab官方文档(textscan用法):https://ww2.mathworks.cn/help/matlab/ref/textscan.html?searchHighlight=textscan&s_tid=doc_srchtitle
  2. MATLAB读取文本数据的方法:https://blog.csdn.net/linus1994/article/details/81663749
  • 元胞数组
    首先了解下基本概念,这篇文章介绍的挺好的,可以看看:https://blog.csdn.net/weixin_42163746/article/details/81193031

  • textscan函数
    Matlab文本文件的读写函数可以分为两类,一类是高级函数(high-level),一类是底层函数(low-level)。通常认为高级函数运用起来简单,但是定制性差。底层函数用法复杂,但是灵活性高。textscan函数是底层函数的一种,主要用于写入元胞数组。

基本用法

C = textscan(fileID,formatSpec)

说明:将已打开的文本文件中的数据读取到元胞数组 C。该文本文件由文件标识符 fileID 指示。使用 函数之前需用fopen 打开文件并获取 fileID 值。完成文件读取后,需调用 fclose(fileID) 来关闭文件。

formatSpec 可以理解为用来格式控制。textscan 函数重复应用格式字符串formatSpec,直到文件指针到达文件末尾,如果读取到不能匹配formatSpec的数据则读取自动结束。

下面给出一个简单的例子:
在这里插入图片描述

filename = 'F:\wd\scan1.dat';%文件所在位置,注意一定要加文件后缀
fileID = fopen(filename);
C = textscan(fileID,'%s %s %f32 %d8 %u %f %f %s %f');
fclose(fileID);

查看结果

C

C = 1x9 cell array
  Columns 1 through 5

    {3x1 cell}    {3x1 cell}    {3x1 single}    {3x1 int8}    {3x1 uint32}

  Columns 6 through 9

    {3x1 double}    {3x1 double}    {3x1 cell}    {3x1 double}


通过上述例子,我们大概知道了其函数的基本用法,现在重点来讲解下formatSpec是如何来控制读取格式的

在上述例子中,%d ,%s等等表示转换设定符,字母代表一列字符的相应格式,常用的有%d, %f, %s,分别表示int,double以及字符串类型的数据,带有数字的可以具体参照官方文档。按照例中读取格式与顺序,按列读取(即一列储存为一个元胞单元),所以该元胞数组为1-by-9 大小,每个元胞单元为3-by-1。

如果想跳过中间某列字段,则可以用%*k表示,k是对应转换设定字符,如d,f,s。

以上仅对以空格为分隔符的数据文件起作用。如果遇到像csv类以逗号为分隔符的的文件,则必须使用下列格式的制定分隔符。

以csv文件为例,有

filename = 'F:\wd\scan1.csv';
fileID = fopen(filename);
C = textscan(fileID,'%s %s %f32 %d8 %u %f %f %s %f''Delimiter',',');%  其中 ',' 表示分隔符类型为逗号
fclose(fileID);

.

  • 实战

更多用法请参考官方文档,现给出实战例子。

数据样式
在这里插入图片描述
一个样本数据包含四列同长的时间序列,共有数据样本9个,文件名为z1到z9,文件格式为.csv

filepath='F:\mydata\';%为了循环输入文件,先把文件前面的相同路径写出

for i=1:9 %循环读取

fileID=fopen([filepath,'z',num2str(i),'.csv']); %矩阵形式组合成路径字符串

a_txt=textscan(fileID,'%s',4,'Delimiter',','); %为了读取数据,先读文本
%其中4表示读取4次(注意该格式是读一个不是一列),结束后光标移到数字之前

XTrain(i)=textscan(fileID,repmat('%d',[1,4]),'Delimiter',',','CollectOutput',1);
%读取数据,四列都将储存在一个元胞单元中(单引号和逗号较多,注意区分)

fclose(fileID);
end

结果是一个1-by-9的元胞数组,即共有9个元胞单元,每个元胞单元结构为N-by-4,其中N为时间序列的长度。

遗传算法优化BP神经网络(GABP)是一种结合了遗传算法(GA)和BP神经网络的优化预测方法。BP神经网络是一种多层前馈神经网络,常用于模式识别和预测问题,但其容易陷入局部最优。而遗传算法是一种模拟自然选择和遗传机制的全局优化方法,能够有效避免局部最优 。GABP算法通过遗传算法优化BP神经网络的权重和阈值,从而提高网络的学习效率和预测精度 。 种群:遗传算法中个体的集合,每个个体代表一种可能的解决方案。 编码:将解决方案转化为适合遗传操作的形式,如二进制编码。 适应度函数:用于评估个体解的质量,通常与目标函数相反,目标函数值越小,适应度越高。 选择:根据适应度保留优秀个体,常见方法有轮盘赌选择、锦标赛选择等。 交叉:两个父代个体交换部分基因生成子代。 变异:随机改变个体的部分基因,增加种群多样。 终止条件:当迭代次数或适应度阈值达到预设值时停止算法 。 初始化种群:随机生成一组神经网络参数(权重和阈值)作为初始种群 。 计算适应度:使用神经网络模型进行训练和预测,根据预测误差计算适应度 。 选择操作:根据适应度选择优秀个体 。 交叉操作:对选择的个体进行交叉,生成新的子代个体 。 变异操作:对子代进行随机变异 。 替换操作:用新生成的子代替换掉一部分旧种群 。 重复步骤2-6,直到满足终止条件 。 适应度函数通常以预测误差为基础,误差越小,适应度越高。常用的误差指标包括均方根误差(RMSE)或平均绝对误差(MAE)等 。 GABP代码中包含了适应度函数的定义、种群的生成、选择、交叉、变异以及训练过程。代码注释详尽,便于理解每个步骤的作用 。 GABP算法适用于多种领域,如时间序列预测、经济预测、工程问题的优化等。它特别适合解决多峰优化问题,能够有效提高预测的准确和稳定
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值