- 博客(18)
- 收藏
- 关注
原创 Transferable Joint Attribute-Identity Deep Learning for Unsupervised Person Re-Identification
1.引入行人重识别中无监督学习:从源域有标签数据中学习到关于行人视图不变信息的特征表示,然后将模型转移、并且使之适用到无标签数据的目标域中。大多数现有的人员重新识别(re-id)方法都需要从每个摄像机对的一大套成对标记的训练数据的单独大集合中进行监督模型学习。 由于需要跨许多摄像机视图执行重新识别,这极大地限制了它们在现实世界大规模部署中的可扩展性和可用性。 为了解决此可伸缩性(scalability)问题,作者提出了一种新颖的深度学习方法,将现有数据集的标记信息转移到一个新的看不见(未标记)的目标上,
2020-07-06 10:55:52 384
原创 Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitro
Unlabeled Samples Generated by GAN Improve the Person Re-identification Baseline in vitroAbstractAbstract本文的主要贡献是一个简单的半监督管道,它只使用原始训练集而不收集额外的数据。它的挑战在于: 1)如何只从训练集中获取更多的训练数据;2)如何使用新生成的数据。...
2020-06-19 16:16:30 617
原创 d2lzh_pytorch
学习出处:http://tangshusen.me/Dive-into-DL-PyTorch/#/常用的函数#!/usr/bin/env python# coding: utf-8import collectionsimport mathimport osimport randomimport sysimport tarfileimport timefrom IPython import displayfrom matplotlib import pyplot as pltim
2020-06-18 21:40:12 892
原创 3.11 模型选择、欠拟合和过拟合
K折交叉验证由于验证数据集不参与模型训练,当训练数据不够用时,预留大量的验证数据显得太奢侈。一种改善的方法是K折交叉验证(KK-fold cross-validation)。在KK折交叉验证中,我们把原始训练数据集分割成K个不重合的子数据集,然后我们做K次模型训练和验证。每一次,我们使用一个子数据集验证模型,并使用其他K−1个子数据集来训练模型。在这K次训练和验证中,每次用来验证模型的子数据集都不同。最后,我们对这K次训练误差和验证误差分别求平均。多项式函数拟合实验%matplotlib inline
2020-06-18 21:35:24 257
原创 3.10 多层感知机的简洁实现
学习网址:http://tangshusen.me/Dive-into-DL-PyTorch/#/import torchfrom torch import nnfrom torch.nn import initimport numpy as npimport syssys.path.append("..") import d2lzh_pytorch as d2l1 定义模型加了一个全连接层作为隐藏层。它的隐藏单元个数为256,并使用ReLU函数作为激活函数。num_inputs,
2020-06-18 21:28:17 139
原创 3.9 多层感知机的从零开始实现
多层感知机就是含有至少一个隐藏层的由全连接层组成的神经网络,且每个隐藏层的输出通过激活函数进行变换。多层感知机的层数和各隐藏层中隐藏单元个数都是超参数。以单隐藏层为例并沿用本节之前定义的符号,多层感知机按以下方式计算输出:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-5eX1719z-1592486805694)(attachment:image.png)]$$$$其中ϕϕϕ表示激活函数。在分类问题中,我们可以对输出OOO做softmax运算,并使用softmax回归中的
2020-06-18 21:26:59 267
原创 Pip 实现anaconda创建的多环境下包的安装
跑代码时发现有一个包conda没安装上,去网上搜了一下应该时pip install,但是要安装到自己的虚拟环境中。去网上转了一圈,应该是重新配置环境变量具体:计算机右键属性——高级系统——环境变量(找到你之前andconda配置的环境path,我的在系统变量)编辑,将需要的环境跟主环境同要求添加,同时挪到之前的上面,如下图:...
2020-06-17 16:40:22 264
原创 Focal Loss for Dense Object Detection
Focal Loss for Dense Object DetectionAbstract1. IntroductionRelated Work3. Focal Loss3.1. Balanced Cross Entropy3.2. Focal Loss Definition论文Abstract迄今为止,最高精度的对象检测器基于R-CNN推广的两阶段方法,其中将分类器应用于稀疏的候选对象位置集。 相比之下,应用于可能物体位置的规则,密集采样的一级检测器可能会变得更快,更简单,但到目前为止,其精度已经落
2020-05-26 16:42:21 361
原创 3.8激活函数【relu sigmoid tanh 】
学习来源1 ReLU函数ReLU(rectified linear unit)函数提供了一个很简单的非线性变换。给定元素x,该函数定义为:ReLU(x)=max(x,0) ReLU(x)= max(x,0) ReLU(x)=max(x,0)ReLU函数只保留正数元素,并将负数元素清零。为了直观地观察激活函数变换,我们先定义一个绘图函数xyplot。%matplotlib inlineimport torchimport numpy as npimport matplotlib.pyl
2020-05-22 09:55:37 216
原创 Pytorch 学习
学习出处:http://tangshusen.me/Dive-into-DL-PyTorch/#/之前的文章里面忘了标注,抱歉。
2020-05-22 09:42:38 103
原创 Mancs: A Multi-task Attentional Network with Curriculum Sampling for Person Re-identification
Mancs: A Multi-task Attentional Network with Curriculum Sampling for Person Re-identificationAbstract1 Introduction论文Abstract我们提出了一种名为Mancs的新型深度网络,它从以下几个方面解决了人们的重新识别问题:充分利用人员错位问题的注意机制,对排名损失进行适当抽样,以获得更稳定的人员表征。从技术上讲,我们提供了一个新的完全注意区块,它受到深度监督,可以插入任何CNN,以及一种新
2020-05-16 16:32:07 1080
原创 3.7 softmax回归简洁实现
#导入所需的包import torchfrom torch import nnfrom torch.nn import initimport numpy as np# import sys# sys.path.append("..") import d2lzh_pytorch as d2l1.读取或获取数据#使用Fashion-MNIST数据集和上一节中设置的批量大小。batch_size = 256train_iter, test_iter = d2l.load_data_fash
2020-05-12 21:16:35 253
原创 3.6 softmax回归从零开始实现
#导入所需的包import torchimport torchvisionimport numpy as npimport syssys.path.append("..") # 为了导入上层目录的d2lzh_pytorchimport d2lzh_pytorch as d2l3.6.1 获取和读取数据batch_size = 256train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)len(train_iter
2020-05-12 21:14:42 261
原创 3.5图像分类数据集
图像分类数据集中最常用的是手写数字识别数据集MNIST[1]。但大部分模型在MNIST上的分类精度都超过了95%。为了更直观地观察算法之间的差异,我们将使用一个图像内容更加复杂的数据集Fashion-MNIST[2]本节将使用torchvision包,它是服务于PyTorch深度学习框架的,主要用来构建计算机视觉模型。torchvision主要由以下几部分构成:torchvision.datasets: 一些加载数据的函数及常用的数据集接口;torchvision.models: 包含常用的模型结构
2020-05-12 21:12:01 689
原创 Pytorch学习_线性回归的简洁实现
用比上一节线性回归更简洁的代码来实现同样的模型。import torchimport numpy as npfrom torch import nn1.1 生成数据集features是训练数据特征,labels是标签。num_inputs = 2num_examples = 1000true_w = [2, -3.4]true_b = 4.2features = torch.tensor(np.random.normal(0, 1, (num_examples, num_inputs)
2020-05-12 21:05:54 206
原创 A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-Ranking
A Pose-Sensitive Embedding for Person Re-Identification with Expanded Cross Neighborhood Re-RankingAbstract具有扩展的跨邻域重新排列的行人重新识别的姿势敏感嵌入Abstract
2020-05-10 13:18:01 455
原创 Re-ranking Person Re-identification with k-reciprocal Encoding
Introduction人员重新识别(re-ID)是计算机视觉中的一项艰巨任务。 通常,re-ID可以视为检索问题。 给定一个侦探人员(probe person),我们想在跨相机模式下在图库(gallery)中搜索包含同一人员的图像。 获得初始排名列表后,一种好的做法是添加一个重新排名(re-ranking)步骤,以期望相关图像将获得更高的排名。如上图,可以发现,...
2020-05-04 19:58:39 923
原创 Pytorch学习_线性回归(1)
1.矢量计算表达式在模型训练或预测时,我们常常会同时处理多个数据样本并用到矢量计算。在介绍线性回归的矢量计算表达式之前,让我们先考虑对两个向量相加的两种方法。import torchfrom time import time#下面先定义两个1000维的向量。a = torch.ones(1000)b = torch.ones(1000)"""向量相加的一种方法是,将这两个向量按...
2020-04-28 20:43:45 679
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人